B.Sc. III Year

Semester - V

BBO-E501 DSE-1 Cell and Molecular Biology

MM: 100

Sessional: 30

ESE: 70

Time: 3 hrs

Pass Marks: 40

Learning objective:

- To understand the basic knowledge of cell and molecular biology, and techniques in molecular biology.
- To acquire information on cell and cell cycle, structure various cell organelles and their functions.
- To acquire an overall knowledge on cell membrane structure, functions and genetic material.

To become familiar with transcription and regulation of gene expression.

Learning outcomes:

At the end of course student will be able

- The student will be able to familiar with various tools and techniques used in cell and molecular biology like Principles of microscopy like light microscopy, phase contrast microscopy; fluorescence microscopy;
- The student will be able to understand the electron microscopy like scanning EM and scanning Transmission EM (STEM); sample Preparation for electron microscopy; X-ray diffraction analysis.
- The student will be to understand the about the cell structure and functions, cell theory; prokaryotic and eukaryotic cells, various components of cells and their specific functions.
- The student will be able take the decisions for carrier point of views in research, industries and academia

Unit 1: Techniques in Biology:

(8 Lectures)

Principles of microscopy; light microscopy; phase contrast microscopy; fluorescence microscopy; confocal microscopy; sample preparation for light microscopy; electron microscopy (EM)- scanning EM and scanning Transmission EM (STEM); sample Preparation for electron microscopy; X-ray diffraction analysis.

Unit 2: Cell and cell Cycle:

(8 Lectures)

The cell theory; prokaryotic and eukaryotic cells; cell size and shape; eukaryotic cell components. Overview of cell

Unit 3: Cell Organelles:

(20 Lectures)

Mitochondria: structure, marker enzymes, composition; semiautonomous nature; symbiont hypothesis; proteins synthesized within mitochondria; mitochondrial DNA. Chloroplast Structure, marker enzymes, composition; semiautonomous nature, chloroplast DNA. Endoplasmic reticulum, Golgi body &Lysosomes: structures and role. Peroxisomes and Glyoxisomes: structures, composition, functions in animals and plants and biogenesis. Nucleus: nuclear envelope- structure of nuclear pore complex; chromatin; molecular organization, DNA packaging in eukaryotes, euchromatin and heterochromatin, nucleolus and ribosome structure (brief).

Unit 4: Cell Membrane and Genetic Material:

(12 Lectures)

Functions of membranes; models of membrane structure; the fluidity of membranes; membrane proteins and their functions; carbohydrates in the membrane; faces of the membranes; selective permeability of the membranes; cell wall .DNA: Miescher to Watson and Crick- historic perspective, Griffith's and Avery's transformation experiments, Hershey-Chase bacteriophage experiment, DNA structure, types of DNA, types of genetic material. DNA replication (prokaryotes and eukaryotes): bidirectional replication, semi-conservative.

Unit 5: Transcription and Regulation of Gene Expression:

(6 Lectures)

Types of structures of RNA (mRNA, tRNA, rRNA), RNA polymerases; translation (prokaryotes and eukaryotes), genetic code. Prokaryotes: lac operon and tryptophan (trp) peron.

ammer .

DSE-1 SEMESTER-V BBO-E551 (LAB COURSE-05)

- 1. To study prokaryotic cells (bacteria), viruses, eukaryotic cells with the help of light and electron micrographs. 2. Study of the photomicrographs of cell organelles
- 3. To study the structure of plant cell through temporary mounts.
- 4. Study of mitosis and meiosis (temporary mounts and permanent slides).
- 5. Study the effect of temperature, organic solvent on semi permeable membrane.
- 6. Demonstration of dialysis of starch and simple sugar.
- 7. Study of plasmolysis and deplasmolysis on Rhoeo leaf.
- 8. Measure the cell size (either length or breadth/diameter) by micrometry.
- 9. Study the structure of nuclear pore complex by photograph (from Gerald Karp)
- 10. Study of special chromosomes (Polytene&Lampbrush) either by slides or photographs.
- 11. Study DNA packaging by micrographs.
- 12. Preparation of the karyotype and ideogram from given photograph of somatic metaphase

Suggested readings:

- 1. Karp, G. 2010. Cell and Molecular Biology: Concepts and Experiments. 6th Edition. John Wiley &
- 2. De Robertis, E.D.P. and De Robertis, E.M.F. 2006. Cell and Molecular Biology. 8th edition. Lippincott Williams and Wilkins, Philadelphia.
- 3. Cooper, G.M. and Hausman, R.E. 2009. The Cell: A Molecular Approach. 5th edition. ASM Press & Sunderland, Washington, D.C.; Sinauer Associates, MA.
- 4. Becker, W.M., Kleinsmith, L.J., Hardin. J. and Bertoni, G. P. 2009. The World of the Cell. 7th edition. Pearson Benjamin Cummings Publishing, San Francisco.
- 4. Watson, J. D., Baker T.A., Bell, S. P., Gann, A., Levine, M., and Losick, R., 2008 Molecular Biology of the Gene 6th edition. Cold Spring Harbour Lab. Press, Pearson Pub.
- 5. Dubey, R.C. A Text Book of Biotechnology. S. Chand & Company Pvt. Ltd. Ram Nagar, New Delhi-

Just Ashah 21 chart Duman