MMB - E305 ELECTIVE - V MICROBIAL ECOLOGY

L T Credit 3 1 4

Learning objectives:

- To learn about classification of microorganism on the basis of oxygen and carbon source.
- To understand plant-microbes interactions.
- To provide a framework for understanding the relationship between microorganisms and their role in biogeochemical cycling in natural communities.
- To understand the technical aspect of biogas production.

Learning outcomes:

At the end of course student will be able to

- Classify the bacteria on the basis of oxygen and carbon requirement.
- Differentiate positive and negative association of microbes with plants.
- Explain the application of Extremophile.
- Explain setting up of a biogas plant.

UNIT - I

Ecological groups of microorganisms: Based on O2 requirement (aerophile, microaerophiles, Anaerobic bacteria) requirement, based on C sources (methanotrophs, methylotrophs), temperature, and habitat, Microbial diversity- distribution, ecological niche: plant-microbe interactions (12 Lectures)

UNIT - II

Population interaction- population within biofilm; positive and negative interaction- neutralism, commensalisms, synergism, mutualism, competition, antagonism, parasitism, and predation. (10 Lectures)

UNIT - III

Extremophiles- Psychrophiles, acidophiles, alkaliphiles, thermophiles, barophiles and osmophiles, halophiles- membrane variation, electron transport; Application of extremophiles; methanogens and biogas production; Rumen microbiology- rumen anatomy, rumen microorganisms and action. (14 Lectures)

UNIT-IV

Stress Microbiology: Environmental stress (density-dependent and density-independent) stress, stress sequestration by bacteria and other organisms, heavy metal detoxicants (metal-microbe interaction, bioscrption, bioaccumulation and metal scavenging by (12 Lectures)

UNIT - V

Chemolithotrophs: Methylotrophs; microbial leaching (bioleaching) - microbes and mechanism of bioleaching of iron, copper and uranium; oxidative transformation of metals- sulphur oxidation, iron oxidation, ammonia oxidation, hydrogen oxidation.

Suggested Reading

- Dubey R.C. and Maheshwari, D.K. A Textbook of Microbiology. 3rd ed., S. Chand & Co, Ram Nagar, New Delhi, p. 1034. ISBN 81-219-2620-3
- Singh and Purohot, Microbial Ecology, AGROBIOS
- Atlas. Microbial Ecology, Pearson Education ISBN13: 9788129707710.
- Osborn A.M. Smith CCJ (2005). Molecular microbial ecology, Taylor & Francis US.

18

(12 Lectures)