DSC-2C	BCS-C201		DATA STRUCTURES AND FILE		С	CIA	ESE	Time for ESE	
			PROCESSING	4	4	30	70	3Hrs.	
PREREQUISITES		:	Knowledge of C++ programming language for implementation the algorithms						
COURSE OBJECTIVES/		:	After successfully completing this course, students should be able to:						
LEARNING OUTCOMES			 Able to understand the concepts of data structure, data type and array data structure. Able to implement linked list data structure to solve various problems. Able to understand and apply various data structure such as stacks, queues and trees and graphs to solve various computing problems Able to implement internal & external sorting techniques Able to understand the concept of memory management and file organization 						

NOTE: The question paper shall consist of three sections (Sec.-A, Sec.-B and Sec.-C). **Sec.-A** shall contain 10 objective type questions of one mark each and student shall be required to attempt all questions. **Sec.-B** shall contain 10 short answer type questions of four marks each and student shall be required to attempt any five questions. **Sec.-C** shall contain 8 descriptive type questions of ten marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus. The previous year paper/model paper can be used as a guideline and the following syllabus should be strictly followed while setting the question paper.

Basic Data Structures: Abstract data structures- stacks, queues, linked lists and binary trees. **Sets:** Dictionary implementation, use of priority queues, hashing, binary trees, balanced trees, sets with merge-find operations.

Searching: Internal and external searching, use of hashing and balancing techniques. 12L

Memory Management: Garbage collection algorithms for equal sized blocks, storage allocation for objects with mixed size, buddy systems.

6L

Physical Devices: Characteristics of storage devices such as disks and tapes, I/O buffering. Basic File System Operations: Create, open, close, extend, delete, read-block, write-block, protection mechanisms.

File Organizations: Sequential, indexed sequential, direct, inverted, multi-list, directory systems, Indexing using B-tree, B+ tree and their variants, hashing – hash function, collision handling methods, extendible hashing.

5L

BOOKS RECOMMENDED:

- **1** M.T. Goodrich, R. Tamassia and D. Mount, Data Structures and Algorithms in C++, John Wiley and Sons, Inc., 2004.
- **2** T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms, 2nd Ed., Prentice-Hall of India, 2006.
- 3 Robert L. Kruse and A.J. Ryba, Data Structures and Program Design in C++, Prentice Hall, Inc., NJ, 1998.
- 4 B. Stroupstrup, The C++ Programming Language, Addison Wesley, 2004
- 5 D.E. Knuth, Fundamental Algorithms (Vol. I), Addison Wesley, 1997