DSC-3C	BCS-C301		NUMERICAL COMPUTING	L	C	CIA	ESE 70	Time for ESE	
PREREQUISITES		:	Knowledge of C/C++ programming, Data Structure, Linear Algebra and Calculus						
COURSE OBJECTIVES/ LEARNING OUTCOMES		••	 Upon completion of this course, the st obtain an intuitive and workin the basic problems of numerica demonstrate a basic knowled efficient solution of models b equations, ordinary different equations. apply these techniques to prace 	pletion of this course, the student will be able to: cain an intuitive and working understanding of numerical methods for basic problems of numerical analysis nonstrate a basic knowledge of the techniques for accurate and cient solution of models based on linear and nonlinear systems of nations, ordinary differential equations and partial differential nations.					
NOTE: The question paper shall consist of three sections (SecA, SecB and SecC). SecA shall contain 10 objective type questions of one mark each and student shall be required to attempt all questions. SecB shall contain 10 short answer type questions of four marks each and student shall be required to attempt any five questions. SecC shall contain 8 descriptive type questions of ten marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus. The previous year paper/model paper can be used as a guideline and the following syllabus should be									

Solution to Transcendental and Polynomial Equations: Iterative methods, bisection method, **12L** secant method, Newton-Raphson method, fixed point iteration, methods for finding complex roots.

Matrices and Linear System of Equations: LU decomposition method for solving systems of **10L** equations, Symmetric positive definite matrices and least square approximation, iterative algorithms for linear equations.

Interpolation: Polynomial interpolation, Newton-Gregory, Stirling's, Bessel's and Lagrange's **10L** interpolation formula, Newton's divided differences interpolation formulae.

Curve fitting: B-spline and Approximation: Fitting linear and non-linear curves, weighted least **10L** square approximation, method of least square for continuous functions.

Numerical Differentiation and Integration: Numerical differentiation and errors in numerical
differentiation, Newton-Cotes formulae, trapezoidal rule, Simpson's rule, Gaussian integration.8LNumerical Solutions of Ordinary Differential Equations: Picard's and Taylor's series, Euler's
and Runge-Kutta (RK) methods.5L

Finite Element Method: Boundary value problems, Rayleigh and Galerkin methods of **5L** approximation, applications.

BOOKS RECOMMENDED :

strictly followed while setting the question paper.

- 1 K.E. Atkinson, W. Han, Elementary Numerical Analysis, 3rd Ed., Wiley, 2003.
- 2 C. Xavier, S.S. Iyengar, Introduction to Parallel Algorithms, Wiley-Interscience, 1998.
- **3** A. Kharab, R.B. Guenther, An Introduction to Numerical Methods: A MATLAB Approach, 1st Ed., Chapman and Hall/CRC, 2001.
- **4** B. Bradie, A Friendly Introduction to Numerical Analysis, Pearson Education, 2007.
- **5** S.R. Otto and J.P. Denier, An Introduction to Programming and Numerical Methods in MATLAB, Springer, 2005.
- **6** M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, 7th Ed., New Age International Publishers, 2007.