DSC-4C	BCS-C401		DESIGN AND ANALYSIS OF ALGORITHMS		L	С	CIA	ESE	Time for ESE
					4	4	30	70	3Hrs.
PREREQUISITES		:	Knowledge of C/C++ programming, Data Structure, Discrete Mathematical						
			Structures						
COURSE OBJECTIVES/		:	Upon successful completion of this course, the student will be able to:						
LEARNING			Analyze and compare complexity for different types of algorithms for						
OUTCOMES			different types of problems.						
			Apply mathematical preliminaries to the analyses and design stages of						
			different types of algorithms						
			•	Recognize the general principles and good algorithm design techniques					
				for developing efficient computer algorithms.					

NOTE: The question paper shall consist of three sections (Sec.-A, Sec.-B and Sec.-C). **Sec.-A** shall contain 10 objective type questions of one mark each and student shall be required to attempt all questions. **Sec.-B** shall contain 10 short answer type questions of four marks each and student shall be required to attempt any five questions. **Sec.-C** shall contain 8 descriptive type questions of ten marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus. The previous year paper/model paper can be used as a guideline and the following syllabus should be strictly followed while setting the question paper.

Introduction: RAM model, O(log n) bit model. Review of data structures: Balanced trees, Mergeable sets. Algorithm Design Techniques: Iterative techniques, Divide and conquer, dynamic programming, greedy algorithms.	3L 3L 14L							
Searching and Sorting Techniques : Review of elementary sorting techniques-selection sort, bubble sort, insertion sort, more sorting techniques-quick sort, heap sort, merge sort, shell sort, external sorting.								
Lower bounding techniques: Decision Trees, Adversaries. String Processing: KMP, Boyre-Moore, Robin Karp algorithms.								
Introduction to randomized algorithms: Random numbers, randomized Qsort, randomly Built BST Number Theoretic Algorithms: GCD, Addition and Multiplication of two large numbers, polynomial arithmetic, Fast-Fourier Transforms.								
Graphs: Analysis of Graph algorithms Depth-First Search and its applications, Breadth-First Search and its applications, minimum Spanning Trees and Shortest Paths.								
Introduction to Complexity Theory: Class P, NP, NP-Hard, NP Completeness. Introduction to								

BOOKS RECOMMENDED:

Approximation Algorithms

- **1** T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms, Prentice-Hall of India, 2006.
- 2 J. Kleinberg and E. Tardos, Algorithms Design, Pearson Education, 2006.
- S. Baase, Computer Algorithms: Introduction to Design and Analysis, Addison Wesley, 1999.
- 4 A.V. Levitin, Introduction to the Design and Analysis of Algorithms, Pearson Education, 2006.