DSE-1C	BCS-E501A		OPERATING SYSTEMS		С	CIA	ESE	Time for ESE	
D3L-1C		_	OI LIGHTING STSTEMS	4	4	30	70	3Hrs.	
PREREQUISITES		:	Knowledge of computer architecture and assembly language						
COURSE OBJECTIVES/		:	After successfully completing this course, students should be able to:						
LEARNING OUTCOMES			 understand key mechanisms in design of operating systems modules 						
			 understand process management, concurrent processes and threads, memory management, virtual memory concepts, deadlocks compare performance of processor scheduling algorithms produce algorithmic solutions to process synchronization problems 						

NOTE: The question paper shall consist of three sections (Sec.-A, Sec.-B and Sec.-C). **Sec.-A** shall contain 10 objective type questions of one mark each and student shall be required to attempt all questions. Sec.-B shall contain 10 short answer type questions of four marks each and student shall be required to attempt any five questions. Sec.-C shall contain 8 descriptive type questions of ten marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus. The previous year paper/model paper can be used as a guideline and the following syllabus should be strictly followed while setting the question paper.

Introduction: Operating System as a resource manager, operating system classification, system 6L calls, traps, architectures for operating systems.

Device Management: Goals of I/O software, Design of device drivers.

Processor **Management:** Process overview, process 10L states and state transition, multiprogramming, multi-tasking, levels of schedulers and scheduling algorithms.

14L

4L

Process Synchronization - Critical section and mutual exclusion problem, classical synchronization problems, deadlock prevention.

Multithreading Memory Management: Classical memory management techniques, paging, 12L segmentation, virtual memory.

File Management: Overview of file management system, disk space management, directory 8L structures.

6L

Protection domains, access control lists, protection models.

BOOKS RECOMMENDED:

- 1 A.S. Tanenbaum, Modern Operating Systems, 3rd Ed., Prentice-Hall of India, 2008.
- 2 William Stallings, Operating Systems: Internals and Design Principles, 5th Ed., Prentice-Hall of India, 2006.
- 3 Gary Nutt, Operating Systems: A Modern Approach, 3rd Ed., Addison Wesley, 2004.
- 4 D.M. Dhamdhere, Operating Systems: A Concept Based Approach, 2nd Ed., Tata McGraw-Hill, 2007.