DSE-1C	BCS-E501B		DATA MINING		С	CIA	ESE	Time for ESE	
		_	DATA MINING	4	4	30	70	3Hrs.	
PREREQUISITES		:	: Knowledge of Database Management System (DBMS)						
COURSE OBJECTIVES/		:	: Upon successful completion of this course, the student will be able to:						
LEARNING OUTCOMES			Identify data mining functionalities						
			Identify data warehousing functionalities						
			Apply data preprocessing techniques - data cleaning, data integration						
			and transformation, data reduction, discretization, and concept hierarchy generation						
			 Describe data warehousing ar 	nd dat	a mini	ing arcl	nitectur	es	
			- Describe data warehousing ar	iu uat	a mm	ing arti	nicetui	CS	

NOTE: The question paper shall consist of three sections (Sec.-A, Sec.-B and Sec.-C). **Sec.-A** shall contain 10 objective type questions of one mark each and student shall be required to attempt all questions. **Sec.-B** shall contain 10 short answer type questions of four marks each and student shall be required to attempt any five questions. **Sec.-C** shall contain 8 descriptive type questions of ten marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus. The previous year paper/model paper can be used as a guideline and the following syllabus should be strictly followed while setting the question paper.

Overview: The process of knowledge discovery in databases, predictive and descriptive data mining techniques, supervised and unsupervised learning techniques.

Techniques of Data Mining: Link analysis, predictive modeling, database segmentation, score **20L** functions for data mining algorithms, Bayesian techniques in data mining.

Issues in Data Mining: Scalability and data management issues in data mining algorithms, parallel and distributed data mining, privacy, social, ethical issues in KDD and data mining, pitfalls of KDD and data mining.

BOOKS RECOMMENDED:

- Margaret H. Dunham, Data Mining: Introductory and Advanced Topics, Pearson, 2002. Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques, 2nd Ed., Morgan
- **2** Kaufmann, 2006.
- **3** Arun Pujari, Data Mining Techniques, University Press, 2001.
- D. Hand, H. Mannila and P. Smyth, Principles of Data Mining, Prentice-Hall of India, 2006.
- **5** G.K. Gupta, Introduction to Data Mining with Case Studies, Prentice-Hall of India, 2006.