DSE-2C	BCS-E601C		COMPUTER NETWORKS	L	С	CIA	ESE	Time for ESE	
DSE-2C	PC2-EOUIC		COMPUTER NETWORKS	4	4	30	70	3Hrs.	
PREREQUISITES			: Knowledge of operating system and basic electrical principles						
COURSE OBJECTIVES/		:	: Upon completion of this module, students will be able to:						
LEARNING OUTCOMES			analyze the requirements for a given organizational structure and select						
			the most appropriate networking architecture and technologies;						
 analyze, specify and design the topological and routing strategies f 						strategies for an			
	IP based networking infrastructure								

NOTE: The question paper shall consist of three sections (Sec.-A, Sec.-B and Sec.-C). **Sec.-A** shall contain 10 objective type questions of one mark each and student shall be required to attempt all questions. **Sec.-B** shall contain 10 short answer type questions of four marks each and student shall be required to attempt any five questions. **Sec.-C** shall contain 8 descriptive type questions of ten marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus. The previous year paper/model paper can be used as a guideline and the following syllabus should be strictly followed while setting the question paper.

Basic Concepts: Components of data communication, distributed processing, Line configuration, topology, transmission mode, and categories of networks.	3L
OSI and TCP/IP Models: Layers and their functions, comparison of models. Digital Transmission: Interfaces and Modems: DTE-DCE Interface, modems, cable modems. Transmission Media: Guided and unguided, Attenuation, distortion, noise, throughput, propagation speed and time, wavelength, Shannon Capacity.	4L 3L 5L
Telephony: Multiplexing, error detection and correction, Many to one, one to many, WDM, TDM, FDM, circuit switching, packet switching and message switching.	5L
Data Link control protocols: Line discipline, flow control, error control, synchronous and asynchronous protocols overview.	5L
ISDN: Services, historical outline, subscriber's access, ISDN, Layers, and broadband ISDN.	5L

Devices: Repeaters, bridges, gateways, routers, The Network Layer, Design Issues, Network Layer Addressing and Routing concepts (Forwarding Function, Filtering Function); Routing Methods (Static and dynamic routing, Distributed routing, Hierarchical Routing); Distance Vector Protocol, Link State protocol.

Transport and upper layers in OSI Model: Transport layer functions, connection management, **10L** Functions of session layers, Presentation layer, and Application layer.

BOOKS RECOMMENDED:

- 1 A.S. Tenanbaum, Computer Networks, 4th Ed., Pearson Education Asia, 2003.
- **2** Behrouz A. Forouzan, Data Communication and Networking, 2nd Ed., Tata McGraw Hill.
- 3 D. E. Comer, Internetworking with TCP/IP, Pearson Education Asia, 2001.
- 4 William Stallings, Data and Computer Communications, 7th Ed., Pearson education Asia, 2002.

DSE-2C	BCS-E651C	COMPUTER NETWORKS LAB	P	С	CIA	ESE	Time for ESE
(LAB)			4	2	30	70	3Hrs.

- 1. Simulate Cyclic Redundancy Check (CRC) error detection algorithm for noisy channel.
- 2. Simulate and implement stop and wait protocol for noisy channel.
- 3. Simulate and implement go back n sliding window protocol.
- 4. Simulate and implement selective repeat sliding window protocol.
- 5. Simulate and implement distance vector routing algorithm
- 6. Simulate and implement Dijkstra algorithm for shortest path routing.