DSE 1A.1:

BMA-E501
 Matrices

Credit : 6

Time: 3 hrs \quad| \mathbf{L} | \mathbf{T} | \mathbf{P} |
| ---: | ---: | ---: |
| 4 | 2 | 0 |

NOTE: The question paper shall consist of three sections (Sec.-A, Sec.-B and Sec.-C). Sec.-A shall contain 10 objective type questions of one mark each and student shall be required to attempt all questions. Sec.-B shall contain 10 short answer type questions of four marks each and student shall be required to attempt any five questions. Sec.-C shall contain 8 descriptive type questions of ten marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllbus. The previous year paper/model paper can be used as a guideline and the following syllabus should be strictly followed while setting the question paper.
R, R^{2}, R^{3} as vector spaces over R. Standard basis for each of them. Concept of Linear Independence and examples of different bases. Subspaces of $\mathrm{R}^{2}, \mathrm{R}^{3}$. Translation, Dilation, Rotation, Reflection in a point, line and plane.

Matrix form of basic geometric transformations. Interpretation of eigen values and eigenvectors for such transformations and eigen spaces as invariant subspaces. Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3.

Computation of matrix inverses using elementary row operations. Rank of matrix. Solutions of a system of linear equations using matrices. Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics and Statistics.

Books Recommended

1. A.I. Kostrikin, Introduction to Algebra, Springer Verlag, 1984.
2. S. H. Friedberg, A. L. Insel and L. E. Spence, Linear Algebra, Prentice Hall of India Pvt. Ltd., New Delhi, 2004.
3. Richard Bronson, Theory and Problems of Matrix Operations, Tata McGraw Hill, 1989
