Programme: B.Sc. Degree		Year: III	Semester: V								
Class. D .5											
Subject: Mathematics											
Course Code: Course Title: Numerical Analysis											
Course	CO1: Understanding of approximate numbers and associated errors.										
Outcome	CO2: Find the roots of algebraic and transcendental equations with desired accuracy.										
	CO3: Applyvarious interpolation formulae to interpolate discretely defined functions.										
	CO4: Determine the numerical solution of a given system of linear equations.										
Unit No.	Course Content										
Ι	Approximate numbers and significant digits, rounding off a number, type of										
	errors viz inherent, truncation, absolute, relative and percentage errors,										
	general error formula, error in addition, subtraction, multiplication, division										
	and exponent of numbers, error in a series approximation.										
П	Solution of algebraic and transcendental equations via Bisection, Iteration, 12										
	Regula-Falsi, Newton-Raphson and Graeffe's root squaring methods.										
III	Finite difference operators viz forward, backward, central, average, shift 12										
	and divided difference operators, relation between finite difference										
	operators, tinite differences of a polynomial and transcendental functions,										
11.7	missing term technique, detection of errors by finite difference table.										
IV	Newton's forward and backward interpolation formulae, Gauss's forward 12										
	and backward difference interpolation formulae, Lagrange's interpolation										
	and Newton's divided difference interpolation formulae for unevenity										
N7	Spaced points.										
v	Numerical solution of a system of linear equations via matrix inversion, 12										
	Gauss eminimation, Gauss-Jordan, Cholesky and Croutinethods(diffect										
Suggested											
Suggested Keadings:											

1. F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, N.Y.

- 2. S.S. Sastry, Introductory Methods of Numerical Analysis, Prentice Hall of India, Pvt. Ltd.
- 3. C. E. Froberg, Introduction to Numerical Analysis, Addison-Wesley.
- 4. M.K. Jain, S.R.K Iyengar and R.K.Jain, Numerical methods for Scientific and Engineering Computation, New Age International Pub.
- 5. R. V. Dukkipati, Applied Numerical methods, New Age International Pub.

Mapping of course outcomes with program outcomes & program specific outcomes

CO's No.	P01	PO2	P03	PO4	PO5	PS01	PSO2	PSO3	PSO4
CO1	1	2	2	3	3	2	2	2	2
CO2	3	3	3	3	3	3	3	3	3
CO3	1	2	3	3	3	3	2	3	3
CO4	2	3	3	3	3	2	2	3	3