Programme: B.Sc. Degree		Year: III	Semester: VI									
Class: B.S.	C.											
Subject: Mathematics												
Course Code: Course Title: Linear Algebra												
Course	CO1: Liner algebra is a basic course in almost all branches of science. The objective of this											
Outcome	course is to introduce a student to the basics of linear algebra and some of its applications.											
	CO2: After Successful completion of this course, students should be able to understand the											
	concept of linear transformation which will prepare the students to take up further applications											
	In the relevant fields											
	mathematics and bio mathematics. After completion of this course students appreciate its											
	interdisciplinary nature.											
Unit No.	Course Content Hou											
Ι	Elementary transformations, Echelon and normal forms, Rank of a matrix,											
	Application of matrices to solve a system of linear (both homogeneous and											
	non-homogeneous) equations, Consistency and general solutions.											
II	Vector space: Introd	luction, subspaces, Li	near combinations, linear spans,	12								
	Sums and direct sums, Linear dependence and independence, Bases and											
	dimensions, Dimensi	ions and subspaces, Co	oordinates and change of bases.									
III	III Linear transformations: Linear transformations, rank and nullity, Linear											
	operators, Algebra of linear transformations, Invertible linear											
	transformations, Isor	norphism		10								
IV	Matrix of a linear	transformation relat	ive to ordered bases of finite-	12								
	dimensional vector s	spaces. Correspondence	e between linear transformations									
	and matrices, Linea	r functional: Linear	functional, Dual space and dual									
	basis, Double du	al space, Anninila	tors, Transpose of a linear									
V	Eigen welves and Eig	Tione	tons and Eigen velves of a materia	12								
v	Eigen values and Eig	gen vectors: Eigen vec	and hasis results on characteristic	12								
	roots Cayley Hamil	ton theorem and its us	and basic results on characteristic									
		tion theorem and its us	e in finding inverse of a matrix									
Suggested	Readings:											
1. Ste	phen H. Friedberg, Arno	old J. Insel, Lawrence E.	Spence: Linear Algebra, 4th									
Ed.	Ed., Prentice-Hall of India Pvt. Ltd., New Delhi, 2004.											
2. Da	vid C. Lay: <i>Linear Algeb</i>	bra and its Applications,	3rd Ed., Pearson Education									
Asi	Asia, Indian Reprint, 2007.											
$\begin{array}{c} 3. S. \\ 4 C^{11} \end{array}$	3. S. Lang: <i>Introduction to Linear Algebra</i> , 2nd Ed., Springer, 2005.											
4. GII 5 Ho	IDERI SIRANG: Linear Algebra and its Applications, 1 homson, 2007.											
6. H	Helson: Linear Algebra, Hindustan Book Agency, New Delhi, 1994											
7. Sug	suggested digital plateform:NPTEL/SWAYAM/MOOCs											

Mapping of course outcomes with program outcomes & program specific outcomes

CO's No.	P01	PO2	P03	PO4	PO5	PS01	PSO2	PSO3	PSO4
CO1	3	3	3	3	2	2	3	3	3
CO2	3	3	3	2	2	3	3	2	3
CO3	3	3	3	3	3	3	3	2	3