Programme: B.Sc. (Hons.)		Year: IV	Semester: VII								
Class: B.Sc.											
Subject: Mathematics											
Course Code: Course Title: Advanced Differential Equation											
Course	CO1: Identifying and obtaining the solution of first order differential equation by Picard's										
Outcome	Methods and basic kn	Methods and basic knowledge of linear differential equations of second order.									
	CO2: Analyze the a	CO2: Analyze the application of partial differential equation in terms of wave heat and									
	Laplace equations.	able to understand the	ordinant and singular points and have t	o colvo							
	CO3: Student will be able to understand the ordinary and singular points and now to solve										
	CO4: Students will be	CO4. Students will be able to understand basics of partial differential equations of first order									
	linear and non-linear	linear and non-linear partial differential equations.									
	CO5: Obtaining the se	olution of Linear partial d	ifferential equations with constant coffic	cients.							
Unit No.	Course Content										
Ι	The Existence and	Uniqueness of soluti	ons : The method of successive	12							
	approximation, Pic	approximation, Picard's Existence and Uniqueness theorem, Ordinary and									
	regular singular	points, Power ser	ries solution, Series solution								
	(Frobenius method)	of first and second orde	er linear equations.								
II	Legendre and Bes	sel Functions and th	neir recursion formulae, Integral	12							
	representation and p	roperties.									
III	Solution of linear p	artial differential equat	ions of second order with variable	12							
	coefficients, Applic	ations to the vibrational	mechanical systems.								
IV	Linear homogeneou	s boundary value prob	lems: Eigenvalues, Eigenfunctions,	12							
	Sturm-Liouville bou	indary value problems.									
	Non-homogeneous	boundary value prot	olems: Non-homogeneous Sturm-								
17	Liouville boundary	value problems		10							
V	wave equation, L	aplace equation and	Heat conduction equation, Their	12							
	solutions by method	of separation of variab	les and applications.								
Suggested	Daadinga										
Suggested Keadings: 1 MD Paisinghania: Advanced Differential Equations (S Chand)											
 Wi.D.Kaisinghama, Auvanceu Differential Equations (S Chand) Shenley L Ross: Differential Equations (Wiley India) 											
3. I. N. Sneddon: Elements of Partial Differntial Equations. McGraw Hill Book Company.											
4. S G Deo, V Raghavendra, R Kar, V Laksmikanthan : Text book of Ordinary Differential											

- Equations (McGraw Hill Education) 5. Suggested digital plateform:NPTEL/SWAYAM/MOOCs

Mapping of course outcomes with program outcomes & program specific outcomes

CO's/ No.	P01	PO2	P03	P04	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	1	2	2	3	3
CO2	3	3	3	3	1	2	2	3	3
CO3	3	3	3	3	1	2	2	3	3
CO4	3	3	3	3	1	2	2	3	3
CO5	3	3	3	3	1	2	2	3	3