Proposed Syllabus for B.Sc.

Subject: Mathematics
StartingYearofImplementation:2022-23
Contents ofCoursesforB.Sc.withMathematicsasMajorSubject\&
B.Sc.(Hons) Mathematics

$\begin{array}{\|l} \hline \mathrm{S} . \\ \mathrm{N} \end{array}$	Subject Code	$\begin{gathered} \hline \text { Cours } \\ \text { e } \\ \text { Type } \\ \hline \end{gathered}$	Subject Title	Period			Evaluation Scheme				Subject Total
							Sessional			ESE	
				L	T	P	Credit	CT	TA		
B. Sc I Year											
Semester - I											
1	BMA-C111	DSC	Calculus	5	2	-	6	20	10	70	100
									Total credit		6
Semester - II											
1	BMA-C211	DSC	Algebra	5	2	-	6	20	10	70	100
									Tota	redit	6
ExitOptionwithCertificate											
B. Sc II Year											
Semester - III											
1	BMA-C311	DSC	Differential Equations	5	2	-	6	20	10	70	100
2	BMA-S311	SEC	Analytical Geometry	3	2	-	4	20	10	70	100
Total credit											10
Semester - IV											
1	BMA-C411	DSC	Real Analysis	5	2	-	6	20	10	70	100
	BMA-S411	SEC	Vector Calculus andMechanics	3	2	-	4	20	10	70	100
Total credit											10

B. Sc III Year											
Semester - V											
1	BMA-C511	DSC	Numerical Analysis	5	2	-	6	20	10	70	100
Any one of the following:											
2	BMA-S511	SEC1	Linear Programming	3	2	-	4	20	10	70	100
	BMA-S512	SEC2	Programming in C	2	-	4	4	20	10	70	100
Total credit $\mathbf{1 0}$											
Semester - VI											
1	BMA-C611	DSC	Linear Algebra	5	2	-	6	20	10	70	100
Any one of the following:											
2	BMA-S611	SEC1	Mathematical Modeling	3	2	-	4	20	10	70	100
	BMA-S612	SEC2	Laplace and Fourier Transform	3	2	-	4	20	10	70	100
Total credit											10
ExitOptionwithB.Sc.Degree											
B. Sc IV Year											
Semester - VII											
1	BMA-C711	DSC	Advanced Differential Equations	5	2	-	6	20	10	70	100
2	BMA-C712	DSC	Advanced Real Analysis	5	2	-	6	20	10	70	100
3	BMA-C713	DSC	Mathematical Statistics	5	2	-	6	20	10	70	100
4	BMA-C714	Industrial Training/Research Project/Dissertation	-	-	-	6	20	-	80	100
										redit	24
Semester - VIII											
1	BMA-C811	DSC	Fluid Dynamics	5	2	-	6	20	10	70	100
2	BMA-C812	DSC	Complex Analysis	5	2	-	6	20	10	70	100
3	BMA-C813	DSC	Abstract Algebra	5	2	-	6	20	10	70	100
4	BMA-C814	Industrial Training/Research Project/Dissertation	-	-	-	6	20	-	80	100
SEC/VoC											
1	BMA-S811	Vedic Mathematics	2	1	-	2	20	10	70	100
										redit	24/26
AwardofB.Sc.(Hons.) DegreeinMathematics											

Programme Outcome/ Programme Specific Outcome

Programme Outcome:

PO1: Inculcate foundation knowledge in the students to understand basics of mathematics including applied aspect for the same.
PO2: Evolve in-depth knowledge of various branches of pure and applied mathematics.
PO3: Enhance the ability to develop solution-oriented approach towards various real world problems.
PO4: Develop scientific and mathematical temper.
PO5: Use programming skills to solve mathematical problems enhancing digital literacy.
Programme Specific Outcome:
PSO1: Student would be able to formulate and develop mathematical arguments in a logical manner.
PSO2: Student would have adequate exposure to many aspects of mathematical sciences.
PSO3: Student is equipped with mathematical modeling ability, critical mathematical thinking and problem solving skills etc.
PSO4: Studentswould be able to apply their skills and knowledge in various fields of studies including, science, engineering, commerce and management etc.

B.Sc. I(MATHEMATICS)

Detailed Syllabus

For

CERTIFICATE COURSE

IN

MATHEMATICS

| Programme: Certificate |
| :--- | :--- | :--- | :--- |
| Class: B.Sc. |

Mappingofcourseoutcomeswithprogramoutcomes\&programspecific outcomes

CO's No.	PO1	PO2	P03	P04	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	1	2	3	3	3
CO2	3	3	3	3	1	2	3	3	3
CO3	3	3	3	3	1	2	3	3	3

Note: 1-Low, 2-Medium, 3-High

Mapping of course outcomes with program outcomes \& program specific outcomes

CO's No.	P01	PO2	P03	P04	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	2	2	1	1	1
CO2	3	3	2	3	2	3	---	1	1
CO3	3	2	3	3	1	2	1	1	---

B.Sc. II (MATHEMATICS)

Detailed Syllabus

For
 DIPLOMA COURSE
 IN

MATHEMATICS

Programme: Diploma Class: B.Sc.		Year: II	Semester: III	
Subject: Mathematics				
Course Code:		Course Title: Differential Equations		
Course Outcome	CO1: Imparting knowledge to understand linear ordinary differential equations of first and second order. CO2: Applying different methods to solve various types of differential equations. CO3: Basic knowledge of linear and nonlinear partial differential equation of first order and their solutions.			
Unit No.	Course Content			Hours
I	Geometrical meaning of a differential equation. Exact differential equations, integrating factors. First order higher degree equations solvable for $\mathrm{x}, \mathrm{y}, \mathrm{p}$, Lagrange's equations, Clairaut's equations. Equation reducible to Clairaut's form. Singular solutions.			12
II	Linear differential equations of second order: Reduction to normal form. Transformation of the equation by changing the dependent variable/ the independent variable. Solution by operators of non-homogeneous linear differential equations. Reduction of order of a differential equation. Method of variations of parameters. Method of undetermined coefficients.			12
III	Ordinary simultaneous differential equations. Solution of simultaneous differential equations involving operators $\mathrm{x}(\mathrm{d} / \mathrm{dx})$ or $\mathrm{t}(\mathrm{d} / \mathrm{dt})$ etc. Simultaneous equation of the form $d x / P=d y / Q=d z / R$. Total differential equations. Condition for $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}$ $=0$ to be exact. General method of solving Pdx $+\mathrm{Qdy}+\mathrm{Rdz}=0$ by taking one variable constant. Method of auxiliary equations.			12
IV	Linear partial differential equation: Formation of first order PDE, Cauchy's problems for the first order equations, Solution by Lagrange's Method.,			12
V	Non-linear partial differential equation: Formation of first order PDE, Solution by Charpit's Method, Jacobi's method.			12
Suggested Readings: 1. M.D.Raisinghania: Ordinary and Partial Differential Equations (S. Chand) 2. Shepley L. Ross:Differential Equations (Wiley India) 3. I. N. Sneddon: Elements of Partial Differntial Equations (Dover books on Mathematics) 4. S G Deo, V Raghavendra, RKar, V Laksmikanthan : Text book of Ordinary Differential Equations (McGraw Hill Education) 5. Suggested digital platform:NPTEL/SWAYAM/MOOCs				

Mapping of course outcomes with program outcomes \& program specific outcomes

CO's No.	P01	PO2	P03	P04	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	3	1	2	3	3	3
CO2	3	3	3	3	1	2	3	3	3
CO3	3	3	3	3	1	3	3	3	3

Programme: Diploma Class: B.Sc.		Year: II	Semester: III	
Subject: Mathematics				
Course Code: \quad Course Title: Analytical Geometr				
Course Outcome	CO1:Identification and tracing of different conics, equation of Sphere, find family of spheres passing through a circle, tangent planes and normal lines to a sphere. CO2: Obtain equation of Cone, enveloping cone, cylinder, enveloping cylinder. CO3:. Find equation of tangent plane to different conicoids and enveloping cone of a conicoid.			
it No.	Course Conten			Hou
I	General equation of second degree. Tracing of conics. Tangent at any point to the conic, chord of contact, pole of line to the conic, director circle of conic. Polar equation of a conic, tangent and normal to the conic.			8
II	Sphere: Plane section of a sphere. Sphere through a given circle. Intersection of two spheres, radical plane of two spheres. Co-axial system of spheres			8
III	Cones: Right circular cone, enveloping cone and reciprocal cone. Cylinder: Right circular cylinder and enveloping cylinder			8
IV	Central Conicoids: Equation of tangent plane. Director sphere. Normal to the conicoids. Polar plane of a point. Enveloping cone of a conicoid. Enveloping cylinder of a conicoid			8
V	Paraboloids: Circular section, Plane sections of conicoids. Generating lines. Confocal conicoid. Reduction of second degree equations.			8
Suggested Readings: 1. Analytical Solid Geometry by Shanti Narayan and P.K. Mittal, Published by S. Chand \& Company Ltd. 7th Edition. 2. A text book of Mathematics for BA/B.ScVol 1, by V Krishna Murthy \& Others, Published by S. Chand \& Company, New Delhi. 3. A text Book of Analytical Geometry of Three Dimensions, by P.K. Jain and Khaleel Ahmed, Published by Wiley Eastern Ltd., 1999. 4. Co-ordinate Geometry of two and three dimensions by P. Balasubrahmanyam, K.Y. Subrahmanyam, G.R. Venkataraman published by Tata-MC Gran-Hill Publishers Company Ltd., New Delhi. 5. Suggested digital platform: NPTEL/SWAYAM/MOOCS				

Mapping of course outcomes with program outcomes \& program specific outcomes

CO's No.	PO1	PO2	P03	P04	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	3	1	2	2	3	3
CO2	3	3	2	3	1	2	2	3	3
CO3	3	3	2	3	1	2	2	3	3

| Programme: Diploma | Year: II | Semester: IV |
| :--- | :--- | :--- | :--- |
| Class: B.Sc. | | |

Mapping of course outcomes with program outcomes \& program specific outcomes:

CO's No.	P01	P02	P03	P04	P05	PSO1	PSO2	PSO3	PS04
CO1	3	3	2	2	2	2	1	1	1
CO2	3	3	3	3	2	3	1	1	1
CO3	3	2	3	2	1	2	1	1	1

Mapping of course outcomes with program outcomes \& program specific outcomes

CO's No.	P01	PO2	P03	P04	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	1	2	3	3	3
CO2	3	3	3	3	2	2	2	3	3
CO3	3	3	3	3	1	2	3	2	3

B.Sc.III (MATHEMATICS)

Detailed Syllabus

For

B.Sc. Degree

IN

MATHEMATICS

Programme: B.Sc. Degree Class: B.Sc.		Year: III	Semester: V	
Subject: Mathematics				
Course Code:		Numerical Analysis		
Course CO1: Understanding of approximate numbers and associated errors. Outcome CO2: Find the roots of algebraic and transcendental equations with desired accuracy. CO3: Applyvarious interpolation formulae to interpolate discretely defined functions. CO4: Determine the numerical solution of a given system of linear equations.				
it No	Course Content			Hours
I	Approximate numbers and significant digits, rounding off a number, type of errors viz inherent, truncation, absolute, relative and percentage errors, general error formula, error in addition, subtraction, multiplication, division and exponent of numbers, error in a series approximation.			12
II	Solution of algebraic and transcendental equations via Bisection, Iteration, Regula-Falsi, Newton-Raphson and Graeffe's root squaring methods.			12
III	Finite difference operators viz forward, backward, central, average, shift and divided difference operators, relation between finite difference operators, finite differences of a polynomial and transcendental functions, missing term technique, detection of errors by finite difference table.			12
IV	Newton's forward and backward interpolation formulae, Gauss's forward and backward difference interpolation formulae, Lagrange's interpolation and Newton's divided difference interpolation formulae for unevenly spaced points.			2
V	Numerical solution of a system of linear equations via matrix inversion, Gauss elimination, Gauss-Jordan, Cholesky and Croutmethods(direct methods only).			12
Suggested Readings: 1. F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, N.Y. 2. S.S. Sastry, Introductory Methods of Numerical Analysis, Prentice Hall of India, Pvt. Ltd. 3. C. E. Froberg, Introduction to Numerical Analysis, Addison-Wesley. 4. M.K. Jain, S.R.K Iyengar and R.K.Jain, Numerical methods for Scientific and Engineering Computation, New Age International Pub. 5. R. V. Dukkipati, Applied Numerical methods, New Age International Pub.				

Mapping of course outcomes with program outcomes \& program specific outcomes

CO's No.	P01	P02	P03	P04	P05	PSO1	PSO2	PSO3	PSO4
CO1	1	2	2	3	3	2	2	2	2
CO2	3	3	3	3	3	3	3	3	3
CO3	1	2	3	3	3	3	2	3	3
CO4	2	3	3	3	3	2	2	3	3

| Programme: B.Sc. Degree
 Class: B.Sc. | Year: III | Semester: V | |
| :---: | :--- | :--- | :--- | :--- |
| Subject: Mathematics | | | |
| Course Code: | Course Title:Linear Programming | | |
| Course
 Outcome | CO1: Develops ability to formulate real world problems as different types of linear
 programming problems.
 CO2:
 Develops ability to solve different types of linear programming problems by employing
 various techniques.
 CO3: Develops ability to analyse the effect of changes in various parameters on the optimal
 solutions of LPP. | | |
| Course Content | Hours | | |
| I | Linear programming problems, Mathematical formulation of real world
 Uroblems, Convex sets, Supporting and separating hyper-planes, extreme
 points, Graphical solution of two variable Linear Programming Problems. | 8 | |
| II | Basic feasible solutions, Theory of simplex method, Feasibility and optimality
 conditions, Simplex algorithm, Simplex method in tableau format, Artificial
 variable techniques: two-phase method, Big-M method, Cases of different
 types of solutions. | 8 | |
| III | Duality Theory, Formulation of the Dual Problem, Primal-Dual Relationship,
 Duality and Simplex Method, Dual Simplex Method, Sensitivity Analysis. | 8 | |
| IV | Transportation problem and its mathematical formulation, triangular basis,
 northwest-corner method, least cost method and Vogel approximation method
 for determination of starting basic solution, UV algorithm for solving
 transportation problem. | 8 | |
| V | Assignment problem and its mathematical formulation, Hungarian method for
 solving assignment problem, Travelling salesman problem. | 8 | |
| Suggested Readings: | | | |
| 1. Mokhtar S. Bazaraa, John J. Jarvis and Hanif D. Sherali, Linear Programming and | | | |
| Network Flows, 2nd Ed., John Wiley and Sons, India, 2004. | | | |

Mapping of course outcomes with program outcomes \& program specific outcomes

CO's No.	PO1	PO2	P03	P04	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	1	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	2	3	2	3	3

Programme: Degree Class: B.Sc.		Year: III	Semester: V	
Subject: Mathematics				
Course Code:		ourse Title: Programming In C		
Course Outcome	CO1:Writing algorithms for problem solving. CO2: Use the basic concepts of C programming in problem solving. CO3:Apply appropriate control statements and user defined functions. CO4:Identify and apply appropriate programming constructssuch as arrays, structures, unions etc. for problem solving.			
Unit No.	Course Content			Hour
I	Algorithms for problem solving, Structure of a C program, Pre-processor directives, Character set, Tokens in C, Keywords and identifiers, Constants, Variables, Data types, Arithmetic operators, Relational operators, Logical operators, Assignment operator, Conditional operator, Operator precedence and associativity, expressions, Declaration and initialization of variables, Reading and writing characters, Reading and writing strings, Data I/O, Qualifiers, Coercion, Manipulators, Comments, Library functions.			8
II	Branching and looping decisions, Decision making with IF, IF-ELSE, Nesting of IFELSE, ELSE-IF ladder, switch statement, 'for' loop, 'while' loop, 'do' loop, break, continue and goto statements.			8
III	Simple functions, Passing arguments to functions and returning values from functions, Recursion, Reference arguments, Storage classes, Scope and visibility of local and global variables			8
IV	Arrays Fundamentals, One-dimensional arrays, Two-dimensional arrays, Multidimensional arrays, Nesting of arrays, Passing arrays to functions, Strings, String handling functions, Array of strings.			8
V	Structures, Arrays and structures within structures, Array of structures, Passing structures to functions, Unions, Enumerations, typedef, Pointers, Pointers and arrays, Pointers and strings, Array of pointers, Reading from a file and writing in a file.			8
Suggested Readings: 1. Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language, Prentice Hall. 2. Byron S. Gottfried, Schaum's Outline of Theory and Problems of Programming with C, McGraw-Hill. 3. E. Balagurusamy, Programming in ANSI C, Tata McGraw-Hill. 4. YashwantKanitkar, Let us C, B.P.B. Pub.				

Mapping of course outcomes with program outcomes \& program specific outcomes

CO's No.	P01	P02	P03	P04	P05	PSO1	PSO2	PSO3	PS04
CO1	1	1	3	3	3	3	2	3	3
CO2	1	1	3	3	3	3	2	3	3
CO3	1	1	3	3	3	3	2	3	3
CO4	1	1	3	3	3	3	2	3	3

Programme: B.Sc. Degree Class: B.Sc.		Year: III	Semester: VI	
Subject: Mathematics				
Course Code: \quad Co		Course Title: Linear Algebra		
Course Outcome	course is to introduce a student to the basics of linear algebra and some of its applications. CO2: After Successful completion of this course, students should be able to understand the concept of linear transformation which will prepare the students to take up further applications in the relevant fields CO3: The student will use this knowledge in computer science, finance mathematics, industrial mathematics and bio mathematics. After completion of this course students appreciate its interdisciplinary nature.			
Unit No.	Course Content			Hours
I	Elementary transformations, Echelon and normal forms, Rank of a matrix, Application of matrices to solve a system of linear (both homogeneous and non-homogeneous) equations, Consistency and general solutions.			12
II	Vector space: Introduction, subspaces, Linear combinations, linear spans, Sums and direct sums, Linear dependence and independence, Bases and dimensions, Dimensions and subspaces, Coordinates and change of bases.			12
III	Linear transformations: Linear transformations, rank and nullity, Linear operators, Algebra of linear transformations, Invertible linear transformations, Isomorphism			12
IV	Matrix of a linear transformation relative to ordered bases of finitedimensional vector spaces. Correspondence between linear transformations and matrices, Linear functional: Linear functional, Dual space and dual basis, Double dual space, Annihilators, Transpose of a linear transformation.			12
V	Eigen values and Eigen vectors: Eigen vectors and Eigen values of a matrix, product of characteristic roots of a matrix and basic results on characteristic roots, Cayley-Hamilton theorem and its use in finding inverse of a matrix			12
Suggested Readings: 1. Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence: Linear Algebra, 4th Ed., Prentice-Hall of India Pvt. Ltd., New Delhi, 2004. 2. David C. Lay: Linear Algebra and its Applications, 3rd Ed., Pearson Education Asia, Indian Reprint, 2007. 3. S. Lang: Introduction to Linear Algebra, 2nd Ed., Springer, 2005. 4. Gilbert Strang: Linear Algebra and its Applications, Thomson, 2007. 5. Hoffman and Kunze: Linear Algebra, Prentice Hall of India, New Delhi, 1972. 6. H. Helson: Linear Algebra, Hindustan Book Agency, New Delhi, 1994. 7. Suggested digital plateform:NPTEL/SWAYAM/MOOCs				

Mapping of course outcomes with program outcomes \& program specific outcomes

CO's No.	P01	P02	P03	P04	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	2	2	3	3	3
CO2	3	3	3	2	2	3	3	2	3
CO3	3	3	3	3	3	3	3	2	3

Programme: Degree Class: B.Sc.		Year: III	Semester: VI	
Subject: Mathematics				
Course Code:		Course Title: Mathematical Modelling		
Course Outcome	CO1: Understandingfundamental mathematical concepts and skills to deal withreal world problems. CO2: Understanding a mathematical model and the steps involved in Mathematical Modeling Process. CO3: Understandingthe techniques to develop various mathematical models through geometry, algebra and ordinary differential equations of first order.			
Unit No.	Course Content			Hours
I	Mathematical Modelling: Definition, Need, Classification, Simple Situations Requiring Mathematical Modelling, The Technique of Mathematical Modelling, Classification of Mathematical Models, Some Characteristics of Mathematical Models.			8
II	Mathematical Modelling through Geometry, Mathematical Modelling through Algebra, Mathematical Modelling through Trigonometry, Mathematical Modelling through Calculus, Limitations of Mathematical Modelling.			8
III	Linear growth and decay models: Population growth model, Effect of immigration and Emigration on population size, Decrease of temperature, diffusion, Change of price of a commodity, Non-linear growth and decay model: Simple logistic model, Logistic model for non- isolated population, Simple compartment models.			8
IV	Mathematical modeling of Epidemics: Basic concept, Simple Epidemic model through system of ordinary differential equaiton of first order- A simple epidemic model, SIS model with constant number of carrir, Simple epidemic model with carriers, Model with removal, Model with removal and immigration.			8
V	Economics based models: Domar Macro model, Domar first debt model, Momar's second debt model, Samuelson's investment model.			8
Suggested Readings: 1. J. N. Kapur: Mathematical Modelling(New Age International Private Limited) 2. B. Barnes, G.R. Fulford: Mathematical Modelling -with Case Studies: Using Maple and MATLAB (CRC Press) 3. Suggested digital plateform:NPTEL/SWAYAM/MOOCs				

Mapping of course outcomes with program outcomes \& program specific outcomes

CO's No.	P01	P02	P03	P04	P05	PS01	PSO2	PSO3	PSO4
CO1	3	3	3	3	1	3	3	3	3
CO2	3	3	3	3	2	3	3	3	3
CO3	3	3	3	3	2	3	3	3	3

Programme: B.Sc. Degree Class: B.Sc.		Year: II	Semester: III	
Subject: Mathematics				
Course Code: \quad Course Title: Laplace and Fourier Transforms				
Course Outcome	CO1: Describe the ideas of Fourier and Laplace Transforms and indicate their applications. CO2: Use Fourier series for solving boundary value problems. CO3:Solve differential equations with initial conditions using Laplace transform.			
Unit No.	Course Content			Hours
I	Laplace transforms of some standard functions, Existence conditions for theLaplace transform Shifting theorems, Laplace transform of derivatives andintegrals, Laplace transform of periodic functions, error functions, Heaviside unitstep function and Dirac delta function.			8
II	Inverse Laplace transforms and their properties, Shifting theorems, Inverse Laplacetransform of derivatives and integrals, Heaviside expansion theorem, Convolutiontheorem.			8
III	Applications of Laplace transform to solve Ordinary and Partial differentialequations, Applications of Laplace transform to solve integral equations.			8
IV	Fourier series: Trigonometric Fourier Series and its convergence, Fourier series ofeven and odd functions, Gibbs phenomenon, Fourier half-range series, Parseval'sidentity, Complex form of Fourier series.			8
V	Fourier Transforms: Fourier integrals, Fourier sine and cosine transforms and theirproperties Fourier transform of derivatives and integrals, Convolution theorem,Application of Fourier transforms to Boundary Value Problems.			8
Suggested Readings: 1. E. Kreyszig. Advance Engineering Mathematics, John Wiley\& Sons.2011. 2. R.K. Jain and S.R.K. lyenger, Advanced Engineering Mathematics, Narosa Publishing 3. House, 2009. 4. F. B. Hildebrand, Methods of Applied Mathematics, Courier Dover Publication, 1992. 5. L. Debanth and D. Bhatta, Integral Transforms and their Applications. 2 nd Ed. Taylor and 6. Francis Group, 2007.Suggested digital platform: NPTEL/SWAYAM/MOOCS				

Mapping of course outcomes with program outcomes \& program specific outcomes

CO's No.	P01	PO2	PO3	PO4	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	1	2	3	3	2	3
CO2	3	3	3	1	2	3	3	2	3
CO3	3	3	3	1	2	3	3	2	3

B.Sc. IV (MATHEMATICS)

Detailed Syllabus

For

B.Sc. (Hons.) COURSE
 IN

MATHEMATICS

Programme: B.Sc. (Hons.) Class: B.Sc.		Year: IV	Semester: VII	
Subject: Mathematics				
Course Code: \quad Co		Course Title: Advanced Differential Equation		
Course Outcome	CO1: Identifying and obtaining the solution of first order differential equation by Picard's Methods and basic knowledge of linear differential equations of second order. CO2: Analyze the application of partial differential equation in terms of wave heat and Laplace equations. CO3: Student will be able to understand the ordinary and singular points and how to solve power series. CO4: Students will be able to understand basics of partial differential equations of first order, linear and non-linear partial differential equations. CO5: Obtaining the solution of Linear partial differential equations with constant cofficients.			
Unit No.	Course Content			Hours
I	The Existence approximation regular sing (Frobenius me	Uniquenes d's Existe points, f first and	ons : The method of successive niqueness theorem, Ordinary and ies solution, Series solution er linear equations.	12
II	Legendre and representation	el Func perties.	ir recursion formulae, Integral	12
III	Solution of lin coefficients, A	tial diffe ions to th	ions of second order with variable mechanical systems.	12
IV	Linear homoge Sturm-Liouvill Non-homogen Liouville boun	boundary dary value boundary alue proble	ems: Eigenvalues, Eigenfunctions, lems: Non-homogeneous Sturm-	12
V	Wave equatio solutions by m	place equ of separat	Heat conduction equation, Their les and applications.	12
Suggested Readings: 1. M.D.Raisinghania: Advanced Differential Equations (S Chand) 2. Shepley L. Ross: Differential Equations (Wiley India) 3. I. N. Sneddon: Elements of Partial Differntial Equations, McGraw Hill Book Company. 4. S G Deo, V Raghavendra, R Kar, V Laksmikanthan : Text book of Ordinary Differential Equations (McGraw Hill Education) 5. Suggested digital plateform:NPTEL/SWAYAM/MOOCs				

Mapping of course outcomes with program outcomes \& program specific outcomes

CO's/ No.	P01	PO2	P03	P04	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	1	2	2	3	3
CO2	3	3	3	3	1	2	2	3	3
CO3	3	3	3	3	1	2	2	3	3
CO4	3	3	3	3	1	2	2	3	3
CO5	3	3	3	3	1	2	2	3	3

$\begin{aligned} & \text { Programme: B. Sc.(Hons.) } \\ & \text { Class: B.Sc. } \\ & \hline \end{aligned}$			Semester: VII	
Subject: Mathematic				
Course Code:		Paper: Advanced Real Analysis		
Course Outcome	CO1: Advanced real analysis is one of the building blocks of analysis. Objective of this course is to introduce students to basic concepts of real valued functions, Riemann integrations and metric spaces. CO2: On successful completion of the course, students will gain knowledge about concept of real valued functions, sequence and series of real valued functions, Fundamental theorem of calculus, metric spaces, connectedness and compactness of metric spaces etc. CO3: This course has the foundation for higher courses like fixed point theory, topology, functional analysis etc.			
Pa	Paper Contents			Hours
	Sequence of Functions: Sequence of real valued functions, pointwise and uniform convergence of sequence of functions, pointwise and uniform convergences of sequence of functions, uniform bounded sequence of functions, Cauchy's criterion for uniform convergence for sequence of functions, M_{n}-test, integrability and differentiability of uniform convergence sequence of functions.			12
S	Series of Functions: Series of real valued functions, pointwise and uniform convergence of series of functions, Cauchy's criterion for uniform convergence for series of functions, M-test, Abel's test, Dirichlet's test, Series of real valued functions, integrability and differentiability of uniform convergence series of functions. Mean Value Theorem: Rolle's, Lagrange's (First mean value theorem) and Cauchy's mean value theorems (Statements) with examples.			12
R	Riemann integral: Definition and Existence of Riemann integral, Partition, Upper sum, Lower sum, Refinement, Upper and lower Riemann integral, Properties of Riemann integral. Fundamental Theorem of Calculus: First and second fundamental theorem of calculus (statements) with examples.			
M	Metric spaces and its properties: Definition and examples of metric space, Open and closed balls with examples, Neighborhoods, Open and closed sets with some basic concepts, Continuous functions and its basic properties, Diagonal map, Continuity theorem for open set (only statement). Limit points and Closure of sets with some basic concepts, Derive set, Interior points of set, Basic concepts on interior of sets, Boundary of set and exterior of set with examples. Complete metric spaces: Convergent sequence in metric space, Cauchy sequence, Cauchy's criterion theorem, Complete metric spaces with basic properties.			
C l w C r o o	Connected spaces: Connected and disconnected sets, some basic concepts on connectedness, locally connected spaces with examples, Totally disconnected spaces, Path, Path-connectedness with examples. Compact spaces: Open cover and sub cover, Compact metric space, Compact subsets, Basic results on compactness and continuity, Unions and intersections of compact subsets, Compactness of products, Local Compactness with basic concepts.			
Suggested Books 1. Walter Rudin, Principles of Mathematical Analysis, McGraw, Hill. 2. Robert Bartle, the elements of integration and Lebesgue measure, Wiley Classics Library. 3. Gerald Folland, Real Analysis, Modern Techniques and Their Application, Wiley. 4. S.C. Malik and S. Arora, Mathematical Analysis, New Age International. 5. W. A. Sutherland, Introduction to metric and topological spaces (Second Edition), Oxford University Press, New York. 6. M. O. Searcoid, Metric spaces (Springer Undergraduate Mathematics Series), Springer, New York. 7. E. T. Copson, Metric Spaces, Phoenix Public Library, New York.				

Mapping of course outcomes with program outcomes \& program specific outcomes

CO'sNo.	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	1	2	1	1	1
CO2	3	3	3	2	1	3	2	1	1
CO3	3	2	2	2	1	2	1	1	1

Programme: B. Sc.(Hons.) Class: B.Sc.		Year: IV	Semester: VII	
Subject: Mathematics				
Course Code: \quad Cour		ourse Title: Mathematical Statistics		
Course Outcome	CO1: Mathematical Statistics is a basic course in almost all branches of science. The objective of this course is to introduce a student to the basics of probability and statistics with some of its applications. CO2: After completing this course, a student will have the knowledge of probability and statistics, its scope and importance in various fields. CO3: The student will use this knowledge in computer science, finance mathematics, industrial mathematics and bio mathematics. After completion of this course students appreciate its interdisciplinary nature			
Unit No.	Course Content			Hours
I	Random experiment, sample space and events, algebra of events. Definitions of Probability: Classical, statistical and axiomatic approaches, illustrations and applications, Addition rule, Conditional probability, independence of events and multiplication rule, Total probability rule, Bayes' theorem with applications.			12
II	Definitions of discrete and continuous random variables, Distribution function, probability mass and density functions - properties and illustrations, Expectation of a random variable and rules of expectation and related results, Probability generating function, Moments and moment generating function - properties and uses, Bernoulli's Distribution, Binomial Distribution, Poisson distribution (their density functions, mean, variance, moments up to fourth order)			12
III	Normal distribution, Uniform \& Exponential distribution, sampling, types of Sampling, Test the significance, critical reason and level of significance, Null hypothesis, Test of hypothesis, Testing the significance of sample mean and difference between means of two samples.			12
IV	Pt. Estimation, Interval Estimation, Methods of Estimation, Max Likelihood method, Method of moments, Unbiasedness, Efficiency, Consistency, Sufficiency.			12
V	Curve Fitting,methods of Least square, Simple linear regression,Correlation, Multiple correlation.			12
Suggested Readings: 1. Miller \& Freund: Probability and Statistics, Prentice Hall 2. Gupta \&Kapoor: Probability and Statistics, Sultan. Chand \& Sons 3. M.R.Spiegel: Theory \& problems of Probability, Schaum'sOtline Series 4. Ray \& Sharma, Mathematical Statistics, Ram Prasad Publication 5. S Ross: A First Course in Probability, PrenticeHall. 1. Suggested digital plateform:NPTEL/SWAYAM/MOOCS				

Mapping of course outcomes with program outcomes \& program specific outcomes

CO's No.	P01	P02	P03	P04	P05	PSO1	PSO2	PSO3	PS04
CO1	3	3	2	2	2	2	1	1	1
CO2	3	3	3	2	2	3	2	1	2
CO3	3	2	2	2	1	2	1	1	2

Mapping of course outcomes with program outcomes \& program specific outcomes

CO's No.	PO1	PO2	P03	P04	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	3	3	2	2	1	2
CO2	3	3	3	3	3	3	2	3	3
CO3	3	3	3	3	3	3	3	2	3

Programme: Class: B.Sc.			
Sc.(Hons.)			

Mapping of course outcomes with program outcomes \& program specific outcomes

CO's No.	PO1	PO2	P03	P04	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	2	3	3	3	3
CO2	3	3	3	2	3	3	3	2	3
CO3	3	3	3	3	2	3	2	2	3

Mapping of course outcomes with program outcomes \& program specific outcomes

CO's No.	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	1	2	1	2	3
CO2	3	3	3	3	1	2	2	2	3
CO3	3	3	3	3	1	2	1	2	3
CO4	3	3	3	3	1	2	2	2	3
CO5	3	3	3	3	1	2	2	2	3

Programme: $\mathbf{B . S c . (H o n s .) ~}$ Class: B.Sc.	Year: IV	Semester: VIII	
Subject: Mathematics			
Course Code: \quad Course Title:Vedic Mathematics			
Course			
Outcome	CO1: The course will lead to develop analytical thinking through this and learn efficient approaches for basic computations. CO2: It will help to analyse basic mathematical skills by learning new methods of calculations and will help students to enjoy Mathematics by understanding concepts in different way. CO3: This course will lead the student to basic courses likes trigonometry, algebra, astronomy etc.		
II	Introduction of Vedic Sutras and Upsutras. Application of EkadhikenaPurvena Sutra: Multiplication numbers containing two digits, three digits and more. Division divisor containing two digits.	Hours	
II	Application of EkanyunenaPurvena Sutra: Multiplication numbers containing two digits, three digits and more. Division divisor containing two digits only.	5	
III	Application of Urdhwatiragbhyam Sutra: Multiplication numbers containing two digits, three digits and more. Division divisor containing two digits only.	5	
IV	Application of NikhilamNavatashchramamDashatah Sutra: Multiplication numbers containing two digits, three digits and more. Division divisor containing two digits and more, method (three digits divisor)	5	
V	Application of different Sutras and Upsutras(ParavartyaYojayet Sutra) Square and Cube of numbers containing two digits and more (various methods). Square root and Cuberootofperfect numbers containing four digits and more	5	
(Vilokanam method,ParavartyaYojayet Sutra).			

Suggested Readings:

1. Tirthji, Swami BhartiKrishan, Vedic Mathematics, MotiLalBanarasi Das, New Delhi .
2. KailashVishvakarma: Vedic Ganita: Vihangama Drishti-1, SikshaSanskritiUthana Nyasa, New Delhi
3. NidhiHanda: Ancient Hindu Mathematics: An introduction. OshinaPublisher, Indore.

Mapping of course outcomes with program outcomes \& program specific outcomes

CO's No.	PO1	PO2	P03	PO4	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	1	2	2	1	1
CO2	3	3	3	1	1	3	2	2	1
CO3	3	2	2	2	1	2	1	1	1

