

GURUKULA KANGRI (DEEMED TO BE UNIVERSITY)

Department of Mathematics & Statistics

Proposed Syllabus for B.Sc.

Subject: Mathematics **StartingYearofImplementation:**2022-23

Contents of Courses for B.Sc. with Mathematics as Major Subject & B.Sc. (Hons) Mathematics

S.	Subject	Subject Title]	Perio	d	Ev	Period Evaluati			Subject			
Ν	Code	e					S	essio	nal	ESE	Total		
		Туре											
				L	Т	Р	Credit	CT	TA				
			B. Sc I Yea	r									
Sen	Semester – I												
1	BMA-C111	DSC	Calculus	5	2	-	6	20	10	70	100		
									Total	credit	6		
Sen	nester – II					-							
1	BMA-C211	DSC	Algebra	5	2	-	6	20	10	70	100		
Total credit 6										6			
	ExitOptionwithCertificate												
			B. Sc II Ye	ear									
			Semester –	Ш									
1	BMA-C311	DSC	Differential Equations	5	2	-	6	20	10	70	100		
2	BMA-S311	SEC	Analytical Geometry	3	2	-	4	20	10	70	100		
									Total	credit	10		
			Semester – I	V		-							
1	BMA-C411	DSC	Real Analysis	5	2	-	6	20	10	70	100		
	BMA-S411	SEC	Vector Calculus	3	2	-	4	20	10	70	100		
			andMechanics										
									Total	credit	10		
			ExitOptionwithE	Dipl	oma	1							

	B. Sc III Year										
			Semester	$-\mathbf{V}$	-						
1	BMA-C511	DSC	Numerical Analysis	5	2	-	6	20	10	70	100
An	y one of the fo	ollowing:									
2	BMA-S511	SEC1	Linear Programming	3	2	-	4	20	10	70	100
	BMA-S512	SEC2	Programming in C	2	-	4	4	20	10	70	100
									Tota	l credit	10
			Semester -	- VI							
1	BMA-C611	DSC	Linear Algebra	5	2	-	6	20	10	70	100
An	y one of the fo	ollowing:									
2	BMA-S611	SEC1	Mathematical Modeling	3	2	-	4	20	10	70	100
	BMA-S612	SEC2	Laplace and Fourier	3	2	-	4	20	10	70	100
			Transform								
									Tota	l credit	10
			ExitOptionwithB	Sc.l	Degr	ee					
			B. Sc IV	Year							
1	D) (A . 0711	DCC	Semester -		2		6	20	10	70	100
I	BMA-C/11	DSC	Advanced Differential	2	2	-	6	20	10	70	100
2	BMA-C712	DSC	Advanced Real Analysis	5	2	-	6	20	10	70	100
3	BMA-C713	DSC	Mathematical Statistics	5	2	-	6	20	10	70	100
4	BMA-C714		Industrial	-	-	-	6	20	-	80	100
			Training/Research					_			
			Project/Dissertation								
									Tota	l credit	24
			Semester –	VIII	-						
1	BMA-C811	DSC	Fluid Dynamics	5	2	-	6	20	10	70	100
2	BMA-C812	DSC	Complex Analysis	5	2	-	6	20	10	70	100
3	BMA-C813	DSC	Abstract Algebra	5	2	-	6	20	10	70	100
4	BMA-C814		Industrial	-	-	-	6	20	-	80	100
			Training/Research								
~~			Project/Dissertation								
SE	C/VoC		1								
1	BMA-S811		Vedic Mathematics	2	1	-	2	20	10	70	100
									Tota	l credit	24/26
			AwardofB.Sc.(Hons.) Deg	greei	nMa	then	natics				

Programme Outcome/ Programme Specific Outcome

Programme Outcome:

PO1: Inculcate foundation knowledge in the students to understand basics of mathematics including applied aspect for the same.

PO2: Evolve in-depth knowledge of various branches of pure and applied mathematics.

PO3: Enhance the ability to develop solution-oriented approach towards various real world problems.

PO4: Develop scientific and mathematical temper.

PO5: Use programming skills to solve mathematical problems enhancing digital literacy.

Programme Specific Outcome:

PSO1: Student would be able to formulate and develop mathematical arguments in a logical manner.

- PSO2: Student would have adequate exposure to many aspects of mathematical sciences.
- PSO3: Student is equipped with mathematical modeling ability, critical mathematical thinking and problem solving skills etc.
- PSO4: Studentswould be able to apply their skills and knowledge in various fields of studies including, science, engineering, commerce and management etc.

B.Sc. I(MATHEMATICS) Detailed Syllabus For **CERTIFICATE COURSE** IN **MATHEMATICS**

Programm Class: B.S.	ne: Certificate c.	Year: First	Semester: I							
		Subject: Mathem	atics							
Course Co	de: BMA-C111	Course Title: Calculus								
Course	CO1: Foundation know	wledge for the students	to understand basics of mathematics in	cluding						
Outcome	applied aspect for dev	eloping enhanced quant	itative skills and pursuing higher mathe	ematics						
	and research as well.	· 1:00 /· /·		1						
	CO2: Understand successive differentiation, maxima and minima, asymptotes and									
	tracing in polar, cartesian as well as parametric curves.									
Unit No	Init No.									
				10						
I	theorem Expansion of	tion, nth differential	coefficients of a function, Leibnitz	12						
п	Partial differentiation:	Partial derivatives of fir	st and higher orders. Total differential	12						
	coefficient. First and	second order differentia	al coefficient of an implicit function.	12						
	Homogenous function	s. Euler's theorem on	homogenous function. Maxima and							
	minima upto two indep	endent variables.	5							
III	III Asymptotes: Parallel asymptotes, Asymptotes of an algebraic curve, Asymptotes of									
	non-algebraic curve, A	symptotes of polar curve	es, Position and nature of double point,							
	Curve tracing for Cart	esian form of the curve	s, Curve tracing for polar form of the							
18.7	curves.	C (* 1.41.*		10						
IV	Beta function, Gamm	a function and their p	Partification (Lanothe of surray)	12						
	gamma functions,	Duplication formula.	Rectification (Lengths of curves),							
	Quadrature(Area of cu	ives), volumes and Surr	aces of solids of revolution.							
V	Double integration, Ev	valuation of double inte	egral, Change of order of integration,	12						
	Application of the do	ouble integrals, Triple	integration, Change to spherical co-							
	ordinates, Application	of triple integrals								
Suggested	Readings:			<u> </u>						
1. R.G. B	Bartle & D.R. Sherbert: In	ntroduction to Real Anal	ysis, John Wiley & Sons							
2. S. Bala	achandraRao& C. K. Sha	ntha: Differential Calcu	lus, New Age Publication.							
3. H. An	3. H. Anton, I. Birens and S. Davis: Calculus, John Wiley and Sons, Inc., 2002.									
4. G.B. T	4. G.B. Thomas and R.L. Finney: Calculus, Pearson Education, 2007									
5. Shanti	i Narayan & Dr. P.K. Mi	ttal: Integral Calculus, S	.Chand							
0. Schaul 7 Frwin	Krevszig Advanced Fng	rineering Mathematics	John Wiley & Sons							
8. Gorakl	h Prasad: Differential Ca	lculus. Pothishala Public	cation							
9. B.S.G	ewal: Higher Engineerir	ng Mathematics, Khanna	Publishers							
10. Sugges	sted digital plateform:NF	TEL/SWAYAM/MOO	Cs							

CO's No.	P01	PO2	P03	P04	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	1	2	3	3	3
CO2	3	3	3	3	1	2	3	3	3
CO3	3	3	3	3	1	2	3	3	3

Programm	e: Certificate	Year: I	Semester: II					
Class: B.S.	2.							
		Subject: Mathem	atics					
Course Co	de: BMA-211 C	ourse Title: Algebra						
Course	CO1:Understanding th	neory of equations.						
Outcome	CO2:Knowledge ofba	sic concepts of Groups, F	ings, Fields and their properties.					
	CO3: Foundation for h	igher course in algebra.						
Unit No.		Course Conte	nt	Hours				
Ι	Algebraic Solution of	of cubic and bi-quadra	tic equations, Descarte's rule of	12				
	signs, Relation betwe	een the roots and coeffi	cients of equations.					
II	Binary operations,	Relation, Equivalen	nce relations and partitions,	12				
	Congruence modulo	n, Definition of a g	oup with examples and simple					
	properties, Abelian g	group, Finite and infinite group, Order of a finite group,						
	General properties o	f groups, Composition	table for finite groups, Order of					
	an element of a group	p.						
III	Complexes and sub	groups of a group, T	12					
	Coset decomposition	, Lagrange's theorem,	Cyclic groups.					
IV	Permutations Cyclic	Permutations Even a	and odd permutations. Group of	12				
	Permutations Altern	ating group	and oud permutations, oroup or					
		uning group.						
V	Rings, Elementary p	roperties of Rings, Rin	gs with or without zero divisors,	12				
	Integral domains a	nd fields, Division r	ing or skew fields, Subrings,					
	Subfields.							
Suggested	Readings:							
1. B.	Fraleigh, A first course i	in Abstract Algebra, Addison-wiley, 2003						
2. I.N	I. Herstein, Topics in Al	lgebra, John Wiley & Sons, 2006						
3. The	3. Thomas W Hungerford, Abstract Algebra – An Introduction, Sauders College Publishing 199							
4. Jos	eph A Gallian, Contemp	porary Abstract Algebra, Brooks/Cole Cengage Learning, 2016						

5. Suggested digital platform: NPTEL/SWAYAM/MOOCS

CO's No.	P01	PO2	P03	P04	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	2	2	1	1	1
CO2	3	3	2	3	2	3		1	1
CO3	3	2	3	3	1	2	1	1	

B.Sc. II (MATHEMATICS) Detailed Syllabus For **DIPLOMA COURSE** IN **MATHEMATICS**

Prog	ramm	e: Diploma		Year: II		Semester: III					
Class	s: B.Sc										
				Subject: Mat	them	atics					
Cour	rse Co	de:	Course Ti	tle: Differential Eq	uati	ons					
Cour	rse	CO1: Imparting knowledge to understand linear ordinary differential equations of firs									
Outc	come	second order. CO2: Applying different methods to solve various types of differential equations									
		CO2: Applying different methods to solve various types of differential equations.									
		their solutions.									
Unit	t No.	. Course Content H									
1	T						12				
	•	Geometric	al meaning	of a differential	equ	ation. Exact differential equations,					
		integrating	Clairaut's	st order higher degree equations	ee eo n re	ducible to Clairaut's form Singular					
		solutions.		equations. Equation	11 10	ducible to chanadi s form. Singular					
Ι	Ι	Linoor di	fforantial	quations of second	nd d	order: Reduction to normal form	12				
		Transform	ation of the	equation by changing	ng th	e dependent variable/ the independent					
		variable. S	Solution by	operators of non-h	omo	geneous linear differential equations.					
		Reduction	of order of	a differential equa	tion.	Method of variations of parameters.					
		Method of	undetermine	ed coefficients.			10				
L	11	Ordinary s	simultaneous	s differential equati	ons.	Solution of simultaneous differential	12				
		equations	involving op	perators $x (d/dx)$ or	t (d	/dt) etc. Simultaneous equation of the					
		form dx/P	= dy/Q = dz	R. Total differentia	l equ	ations. Condition for $Pdx + Qdy + Rdz$					
		= 0 to be	exact. Gene Instant Meth	and of auxiliary equi	ing 1 ation	Pdx + Qdy + Rdz = 0 by taking one					
Г	V		· 1 1:00				12				
		Linear par	tial different	ial equation: Formations Solution by L	tion	of first order PDE, Cauchy's problems					
	V			tions, Solution by La	agrai		12				
		Non-linear partial differential equation: Formation of first order PDE, Solution by									
	Charpit's Method, Jacobi's method.										
Sugg	gested	Readings:	O^{-1}	10 (10)00	, .						
	M.D.K Shanla	M.D.Raisinghania: Ordinary and Partial Differential Equations (S. Chand)									
2. 3	L N Sneddon: Elements of Partial Differntial Equations (Dover books on Mathematics)										
4	1. 14. 3 S G D	eo V Raoh	avendra R	Kar V Laksmikan	nthar	· Text book of Ordinary Differentia	, 1				
	Equati	ons (McGr	aw Hill Ed	ucation)	iiiiui	The sook of oraliting Differentia	1				

Suggested digital platform:NPTEL/SWAYAM/MOOCs

CO's No.	P01	PO2	P03	P04	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	3	1	2	3	3	3
CO2	3	3	3	3	1	2	3	3	3
CO3	3	3	3	3	1	3	3	3	3

Program Class: B.S	ne: Diploma Sc.	Year: II	Semester: III					
	Γ	Subject: Mathem	atics					
Course C	ode: Course Ti	tle: Analytical Geometr	y	2 1				
Course	CO1: Identification and	d tracing of different con	f different conics, equation of Sphere, find family of spheres					
Outcome	CO2 : Obtain equation	of Cone enveloping con	mai lines to a sphere.					
	CO2: Obtain equation of CO3: Find equation of	f tangent plane to differen	t conicoids and enveloping come of a	conicoid				
		r tungent plane to uniferen	n comeetas and enveloping cone of a	comeora.				
Unit No.		Course Conte	nt	Hours				
Ι	General equation of se	cond degree. Tracing of	conics. Tangent at any point to the	8				
	conic, chord of contac	ct, pole of line to the co	nic, director circle of conic. Polar					
	equation of a conic, tar	igent and normal to the co	onic.					
II	Sphere: Plane section of a sphere. Sphere through a given circle. Intersection of							
	two spheres, radical pla	ane of two spheres. Co-ax	tial system of spheres					
III	Cones: Right circular	cone, enveloping cone a	nd reciprocal cone. Cylinder: Right	8				
	circular cylinder and en	nveloping cylinder	la recipiocal conc. Cymach. Right	0				
				-				
IV	Central Conicoids: Ed	quation of tangent plane	e. Director sphere. Normal to the	8				
	conicoids. Polar plane	e of a point. Enveloping	g cone of a conicoid. Enveloping					
V	Paraboloids: Circular	section Plane sections	a of conicoids Generating lines	8				
•	Confocal conicoid. Red	duction of second degree	equations.	0				
Suggested	Readings:	0	1					
1. A	nalytical Solid Geometr	ry by Shanti Narayan	and P.K. Mittal, Published by S.	Chand &				
Co	ompany Ltd. 7th Edition							
2. A	text book of Mathemat	ics for BA/B.ScVol 1, b	y V Krishna Murthy & Others, Pu	blished by				
S.	Chand & Company, Ne	w Delhi.						
3. A	A text Book of Analytical Geometry of Three Dimensions, by P.K. Jain and Khaleel							
Pι	Published by Wiley Eastern Ltd., 1999.							
4. Co	o-ordinate Geometry o	of two and three dir	nensions by P. Balasubrahmany	am, K.Y.				
Sı	ıbrahmanyam, G.R. Ve	nkataraman published	by Tata-MC Gran-Hill Publishers	Company				
Lt	Ltd., New Delhi.							
5. Su	5. Suggested digital platform: NPTEL/SWAYAM/MOOCS							
2. 50	66 Pauloini							

CO's No.	P01	PO2	P03	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	3	1	2	2	3	3
CO2	3	3	2	3	1	2	2	3	3
CO3	3	3	2	3	1	2	2	3	3

Progra	amme: Diploma B Sc	Year: II	Semester: IV						
Subje	ct: Mathematics								
Cours	e Code:	Course Title: Rea	Analysis						
Cours	$\mathbf{c} \in \mathbf{CO1} \cdot \mathbf{Real}$ and	lysis is one of the	building blocks of analysis. Objective of this cours	e is to					
Outco	me introduce stude CO2:On succe concept of rea properties. The CO3: This cou	ents to basic concepts essful completion of al numbers set, limit by have the foundation urse will lead the stud	of real numbers and their properties. The course, students have gained knowledge abou point of sets, sequence and series of real numbers and for higher course in real analysis. dent to basic course in advanced real analysis, metric	t basic d their spaces,					
Unit	etc.	C	ourse Contort	Hauna					
No.		C	ourse Content	Hours					
I	Order Structure, Structure and orde numbers (Only bas function and absolu sets), Bounded set, I	Structure, Boundedness of set, Equivalence and Countability: Concept of field Structure and order structure, Order completeness in R, Archimedean properties of real numbers (Only basic concepts), Dedekind's form of Completeness Property, Real valued function and absolute value of real numbers, Equivalent sets and countable sets (Denumerable sets), Bounded set, Least upper bound (l.u.b.) and greatest lower bound (g.l.b.). Limit Point of Set:Neighbourhood of a point, Deleted Neighbourhood, Interior points and							
II	Limit Point of Set:Neighbourhood of a point, Deleted Neighbourhood, Interior points and interior of a set, open set, Isolated and Adherent points of set, Limit point of a set, Derive set, Perfect set, Bolzano-Weierstrass theorem (For sets), Closed set and Closures of a set, Dense set, Compact set and their properties, Open cover, Heine-Borel property and theorem.								
III	Limit and Continuity of Single Variable Function: Limit of function, Algebra of limits of								
	functions, Monotonic functions, Squeeze theorem (statement and example) Continuity and discontinuity of functions, Types of discontinuity, Algebra of continuity, Uniform Continuity, Borel's theorem (statement and example), Boundedness theorem (statement and example), Intermediate value theorem (statement and example), Derivative of function and examples.								
IV	Sequence of Real sequence, Subseque of convergent sequ Weierstrass theorem convergence, Mono Cauchy's first and s	Numbers: Sequence ence, Oscillating and I uences, Cauchy sequences, Cauchy sequences (state of for sequences (state otonic and nested sequenced theorem on lim	e of real numbers, Bounded sequence, Limit of a Divergent sequences, Convergence sequence, Algebra aence, Limit inferior and limit superior, Bolzano- tement and examples), Cauchy general principle of puences, Squeeze theorem (statement and examples), its (statement and examples).	12					
V	Infinite Series of R convergence, Cauch second), Cauchy's Logarithmic test, Ca test, Absolute conver	Real Numbers: Infinitiny's general principle root test, Cauchy's conductive test, Cauchy's integral test, A ergence and conditional	e series, Partial sum of series, Necessary condition for of convergence for series, Comparison test (First and ondensation test, D'Alembert's ratio test, Raabe's test, Abel's test. Dirichlet's test, Alternating series, Leibnitz al convergence,	12					
Sugge	sted Books								
1. F 2. 3. 4. 5. 6.	 R. R. Goldberg, Method of Real Analysis, Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi S. C. Malik and SavitaArora, Mathematical Analysis, New Age International (P) Ltd Publishers. T.M. Apostol, Calculus (Vol. I), John Wiley and Sons (Asia) P. Ltd R.G. Bartle and D. R Sherbert, Introduction to Real Analysis, John Wiley and Sons (Asia) P. Ltd K. A. Ross, Elementary Analysis- The Theory of Calculus Series- Undergraduate Texts in Mathem Springer Verlag. E. Fischer, Intermediate Real Analysis, Springer Verlag. 								
	wapping of course ou	utcomes with program	m outcomes & program specific outcomes:						

CO's No.	P01	PO2	P03	P04	P05	PS01	PSO2	PSO3	PSO4
CO1	3	3	2	2	2	2	1	1	1
CO2	3	3	3	3	2	3	1	1	1
CO3	3	2	3	2	1	2	1	1	1

Programm	ie:	Year:II	Semester: IV							
Class: B.S.	с.									
		Subject Mathem	latics							
Course Co	de: Course Ti	tle: Vector Calculus an	d Mechanics							
Course	CO1: By applying the	he principles of Vector	or Calculus, the student learns to s	solve a						
Outcome	variety of practical p	problems in science an	nd engineering. Exposing the foundat	tions of						
	mechanics which will b	be useful in understandir	ng various physical phenomenon.							
	CO2: Knowledge of b	asic mechanics such as	simple harmonic motion, cycloid, pro	jectiles,						
	virtual works and equil	librium.	oon oo for higher problems in mechani	as such						
	as hydrodynamics this	will be helpful in gettin	α employment in industry	es suen						
Unit No.		Course Con	tent	Hours						
Ι	Vector Calculus : Vector identities, Differential operators, Vector differentiation,									
	Vector integration, Gradient of a vector point function, Directional derivatives of a									
	scalar point function, Divergence and curl of a vector point function, Theorems of									
TT	Gauss, Green and Stokes.									
11	examples Equation of simple harmonic motion Hook's law for horizontal and									
	vertical strings with solved problems									
III	Projectiles: Definitions of projectile (Trajectory, Velocity of projection, Angle of									
	projection, Point of pro	ojection, Range, Time of	flight and greatest height), Position of							
	projectile at any time,	Equation of trajectory, N	Aaximum height, Maximum horizontal							
	nroblems	e, Range and time of fi	ight up an inclined plane and solved							
IV	Virtual Work : Definit	ions of virtual displacen	nent and virtual work done, Difference	8						
	between work done an	nd virtual work done w	ith examples, The principle of virtual							
	work, Work done by	the tension and thrust of	of an extensible string during a small							
• • •	displacement, Some so	lved problems.	Memoria and complex and Vanisman's	0						
V	theorem of moments at	nd unstable equilibrium,	Moments and couples and varignon's	8						
Suggested	Readings: latthew: Vector Calculus	springer Verlag Londo	n Limited 1008							
2. R.C. H	libbeler: Engineering Me	chanics-Statics. Prentics	Hall Publishers							
3. R.C. H	R.C. Hibbeler: Engineering Mechanics-Dynamics, Prentics Hall Publishers									
4. M. Ra	y: A Textbook on Dynan	nics, S. Chand.								
5. M. Ra	y: A Textbook on Static	s, S. Chand.	an Tata MaCanan II'll							
$\begin{array}{ccc} 0, & \mathbf{A}, & \mathbf{Nel} \\ 7, & \mathbf{I}, & \mathbf{S}_{\mathbf{x}} \end{array}$	son: Engineering Mecha	nics Statics and Dynami	cs, 1 ata MCGraw Hill 'ata McGraw Hill							
8. S. L. L	oney: Dynamics of a par	rticle and of rigid bodies	, Cambridge University Press							
9. Sugges	sted digital plateform:NF	PTEL/SWAYAM/MOO	Cs							

CO's No.	P01	PO2	PO3	PO4	PO5	PS01	PSO2	PSO3	PSO4
CO1	3	3	3	3	1	2	3	3	3
CO2	3	3	3	3	2	2	2	3	3
CO3	3	3	3	3	1	2	3	2	3

B.Sc.III (MATHEMATICS)

Detailed Syllabus

For

B.Sc. Degree

IN

MATHEMATICS

Programn	ne: B.Sc. Degree	Year: III	Semester: V					
Class: B.S	с.							
		Subject: Mather	natics					
Course Co	ode: Course T	itle: Numerical Analy	/sis					
Course	CO1: Understanding	of approximate number	ers and associated errors.					
Outcome	CO2: Find the roots of	of algebraic and transc	endental equations with desired ac	curacy.				
	CO3: Applyvarious i	nterpolation formulae	to interpolate discretely defined fu	nctions.				
	CO4: Determine the	numerical solution of a	given system of linear equations.					
Unit No.	nit No. Course Content							
Ι	Approximate numbers and significant digits, rounding off a number, type of							
	errors viz inherent,	truncation, absolute,	relative and percentage errors,					
	general error formula	, error in addition, sub	traction, multiplication, division					
	and exponent of numbers, error in a series approximation.							
II	Solution of algebraic and transcendental equations via Bisection, Iteration,							
	Regula-Falsi, Newton	n-Raphson and Graeffe	e's root squaring methods.					
Ш	Finite difference ope	erators viz forward, b	ackward, central, average, shift	12				
	and divided differe	ence operators, relat	ion between finite difference					
	operators, finite diffe	erences of a polynomi	al and transcendental functions,					
IN/	missing term techniq	ue, detection of errors	by finite difference table.	10				
11	Newton's forward and	nd backward interpola	tion formulae, Gauss's forward	12				
	and backward differ	lad difference interp	nulae, Lagrange's Interpolation					
	spaced points	ied difference interp	oration formulae for unevenity					
V	Numerical solution	of a system of linear	equations via matrix inversion	12				
	Gauss elimination	Gauss-Iordan Chol	esky and Croutmethods(direct	14				
	methods only).	Guuss Jordun, Chor	esky and croatmethous(uncer					
Suggested	Readings:							
Suggesteu	itennings.							

1. F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, N.Y.

- 2. S.S. Sastry, Introductory Methods of Numerical Analysis, Prentice Hall of India, Pvt. Ltd.
- 3. C. E. Froberg, Introduction to Numerical Analysis, Addison-Wesley.
- 4. M.K. Jain, S.R.K Iyengar and R.K.Jain, Numerical methods for Scientific and Engineering Computation, New Age International Pub.
- 5. R. V. Dukkipati, Applied Numerical methods, New Age International Pub.

CO's No.	P01	PO2	P03	PO4	PO5	PS01	PSO2	PSO3	PSO4
CO1	1	2	2	3	3	2	2	2	2
CO2	3	3	3	3	3	3	3	3	3
CO3	1	2	3	3	3	3	2	3	3
CO4	2	3	3	3	3	2	2	3	3

Programm	e: B.Sc. Deg	gree	Year: III	Semester: V					
Class: B.S	с.								
			Subject: Mathen	natics					
Course Co	de:	Course Ti	tle:Linear Programm	ing					
Course Outcome	 CO1: Develops ability to formulate real world problems as different types of linear programming problems. CO2: Develops ability to solve different types of linear programming problems by employing various techniques. CO3: Develops ability to analyse the effect of changes in various parameters on the optimal solutions of LPP. 								
Unit No.	. Course Content H								
Ι	Linear pr problems, points, Gr	inear programming problems, Mathematical formulation of real world roblems, Convex sets, Supporting and separating hyper-planes, extreme oints, Graphical solution of two variable Linear Programming Problems.							
II	Basic feasible solutions, Theory of simplex method, Feasibility and optimality conditions, Simplex algorithm, Simplex method in tableau format, Artificial variable techniques: two-phase method, Big-M method, Cases of different types of solutions.								
III	Duality T Duality ar	heory, Forn Id Simplex	nulation of the Dual 1 Method, Dual Simple	Problem, Primal-Dual Relationship, x Method, Sensitivity Analysis.	8				
IV	Transporta northwest for detern transporta	ation probl -corner me nination c tion proble	em and its mathema thod, least cost metho of starting basic sol m.	tical formulation, triangular basis, d and Vogel approximation method ution, UV algorithm for solving	8				
V	Assignme solving as	nt problem signment p	and its mathematical roblem, Travelling sal	formulation, Hungarian method for esman problem.	8				
Suggested 1. Mo <i>Ne</i> 2. F.S Mo 3. Ha Inc	Readings: okhtar S. Ba <i>twork Flow</i> S. Hillier an cGraw Hill, mdy A. Tal lia, 2006.	nzaraa, John s, 2nd Ed., d G.J. Lieb Singapore, na, <i>Operati</i>	n J. Jarvis and Hanif D John Wiley and Sons, erman, <i>Introduction to</i> , 2009. ons Research, An Intro	9. Sherali, <i>Linear Programming and</i> India, 2004. 9 <i>Operations Research</i> , 9th Ed., Tata 9 <i>oduction</i> , 8th Ed., PrenticeHall	<u>.</u>				

CO's No.	P01	PO2	PO3	PO4	PO5	PS01	PSO2	PSO3	PSO4
CO1	3	3	3	3	1	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	2	3	2	3	3

Programn	ne: Degree	Year: III	Semester: V							
Class: B.S	c.									
			/•							
Comme Co		Subject: Mather	natics							
Course Co	CO1:Writing algorithm	Inte: Programming I		-						
Course	CO1: writing algori	concepts of C programmin	g in problem solving							
Outcome	CO2:Ose the busie (CO3:Apply appropri	iate control statements and	l user defined functions.							
	CO4:Identify and a	ply appropriate programn	ning constructssuch as arrays, structures	, unions						
	etc. for problem solving.									
Unit No.		Course Cor	tent	Hours						
Ι	Algorithms for problem solving, Structure of a C program, Pre-processor directives, 8									
	Character set, Toke	ns in C, Keywords and i	dentifiers, Constants, Variables, Data							
	types, Arithmetic o	perators, Relational operator	ators, Logical operators, Assignment							
	Declaration and init	alization of variables. Re	ading and writing characters. Reading							
	and writing strings	, Data I/O, Qualifiers,	Coercion, Manipulators, Comments,							
	Library functions.		-							
II	Branching and loopi	Branching and looping decisions, Decision making with IF, IF-ELSE, Nesting of IF- 8								
	ELSE, ELSE-IF lad	der, switch statement, 'foi	f loop, while loop, do' loop, break,							
Ш				8						
	Simple functions,	Passing arguments to fi	inctions and returning values from	Ū						
	local and global vari	ables	torage classes, scope and visionity of							
IV	Arrays Fundamenta	ls, One-dimensional arra	ys, Two-dimensional arrays, Multi-	8						
	dimensional arrays,	Nesting of arrays, Passir	g arrays to functions, Strings, String							
	handling functions,	Array of strings.								
V	Structures, Arrays	and structures within stru	actures, Array of structures, Passing	8						
	structures to function	ons, Unions, Enumeratio	ons, typedef, Pointers, Pointers and							
	arrays, Pointers and file	strings, Array of pointers	, Reading from a file and writing in a							
Suggested	Readings:			1						
1. Bri	an W. Kernighan, D	ennis M. Ritchie, The C	Programming Language, Prentice H	Iall.						
2. By	ron S. Gottfried, Sc	haum's Outline of Theo	ory and Problems of Programming	with C,						
Mc	Graw-Hill.			,						
3. E.I	Balagurusamy, Prog	ramming in ANSI C, Ta	ta McGraw-Hill.							
4 37										

4. YashwantKanitkar, Let us C, B.P.B. Pub.

CO's No.	PO1	PO2	P03	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO1	1	1	3	3	3	3	2	3	3
CO2	1	1	3	3	3	3	2	3	3
CO3	1	1	3	3	3	3	2	3	3
CO4	1	1	3	3	3	3	2	3	3

Programm	e: B.Sc. Degree	Year: III	Semester: VI						
Class: B.S.	2.								
		Subject: Mather	natics						
Course Co	de: Course Ti	tle: Linear Algebra							
Course	CO1: Liner algebra is	a basic course in almost	st all branches of science. The object	tive of this					
Outcome	course is to introduce a	student to the basics of	linear algebra and some of its applica	tions.					
	CO2: After Successful	l completion of this co	urse, students should be able to und	erstand the					
	in the relevant fields	formation which will pro-	epare the students to take up further a	pplications					
	CO3. The student will	use this knowledge in c	omputer science finance mathematics	industrial					
	mathematics and bio	mathematics. After con	upletion of this course students app	preciate its					
	interdisciplinary nature).							
Unit No.		Course Cont	ent	Hours					
Ι	Elementary transformations, Echelon and normal forms, Rank of a matrix,								
	Application of matric	ces to solve a system	of linear (both homogeneous and						
	non-homogeneous) e	quations, Consistency	and general solutions.						
II	Vector space: Introduction, subspaces, Linear combinations, linear spans,								
	Sums and direct sur	ns, Linear dependenc	e and independence, Bases and						
	dimensions, Dimensions and subspaces, Coordinates and change of bases.								
III	Linear transformatio	ns: Linear transform	ations, rank and nullity, Linear	12					
	operators, Algebra	of linear trans	formations, Invertible linear						
	transformations, Ison	norphism		10					
IV	Matrix of a linear	transformation relat	ive to ordered bases of finite-	12					
	dimensional vector s	paces. Correspondence	e between linear transformations						
	and matrices, Linear	r functional: Linear 1	functional, Dual space and dual						
	basis, Double dua	al space, Annihilat	fors, Transpose of a linear						
V	Eigen velves and Eig		to an al Eigen velves of a metain	10					
v	Eigen values and Eig	stic roots of a matrix	and hasis results on characteristic	12					
	roots Cayley Hamil	ton theorem and its us	and basic results on characteristic						
		ton theorem and its us	e in moning inverse of a matrix						
Suggested	Readings:								
1. Ste	phen H. Friedberg, Arno	ld J. Insel, Lawrence E.	Spence: Linear Algebra, 4th						
Ed.	, Prentice-Hall of India I	Pvt. Ltd., New Delhi, 20	04.						
2. Da	vid C. Lay: Linear Algeb	ora and its Applications,	3rd Ed., Pearson Education						
	a, Indian Reprint, 2007.		2005						
$\begin{array}{c} 3. S. \\ 4 C^{11} \end{array}$	Lang: Introduction to Lin	lear Algebra, 2nd Ed., S	pringer, 2005.						
4. GII 5 Ho	ffman and Kunze. Linear	r Algebra Prentice Hall	of India New Delhi 1972						
6. H	Helson: Linear Algebra	Hindustan Book Agenc	v. New Delhi, 1994.						
7. Sug	ggested digital plateform	:NPTEL/SWAYAM/M	DOCs						

CO's No.	P01	PO2	P03	PO4	PO5	PS01	PSO2	PSO3	PSO4
CO1	3	3	3	3	2	2	3	3	3
CO2	3	3	3	2	2	3	3	2	3
CO3	3	3	3	3	3	3	3	2	3

Program	nme: Degree	Year: III	Semester: VI								
Class: E	S.Sc.										
		Subject: Mathe	matics								
Course	Code: Course	Title: Mathematical Mo	delling								
Course	CO1: Understandin	gfundamental mathemati	cal concepts and skills to deal withrea	l world							
Outcom	e problems.										
	CO2: Understanding	g a mathematical model a	nd the steps involved in Mathematical M	odeling							
	Process.	othe techniques to de	valor various mathematical models t	hrough							
	geometry algebra	ighte techniques to de	equations of first order	Inough							
Unit No).	Course Co	ntent	Hours							
T	Mathematical Mod	elling: Definition Ne	ed Classification Simple Situations	8							
1	Requiring Mathem	Requiring Mathematical Modelling, The Technique of Mathematical Modelling,									
	Classification of I	Aathematical Models, S	ome Characteristics of Mathematical								
	Models.	Models.									
II	Mathematical Mod	Mathematical Modelling through Geometry, Mathematical Modelling through									
	Algebra, Mathemat	cal Modelling through	Irigonometry, Mathematical Modelling								
ш		initations of Mathematic	al Widdennig.	8							
111	Linear growth and	decay models: Populatio	n growth model, Effect of immigration	0							
	and Emigration on	population size, Decreas	e of temperature, diffusion, Change of								
	Logistic model for r	on- isolated population	Simple compartment models								
IV				8							
	through system of	ordinary differential equi	sic concept, Simple Epidemic model								
	model. SIS model	with constant number of	f carrir. Simple epidemic model with								
	carriers, Model with	removal, Model with rer	noval and immigration.								
V	Economics based n	odels: Domar Macro m	odel Domar first debt model Momar's	8							
·	second debt model,	Samuelson's investment	nodel.	0							
Suggost	ad Doodinger										
Suggest	Cu Keaungs: [Kanur: Mathematical	Modelling(New Age In	ernational Private Limited)								
2. B	Barnes, G.R. Fulford. N	athematical Modelling	with Case Studies: Using Manle and								
MA	TLAB (CRC Press)		the case station completing the								
3. Sug	gested digital platefor	m:NPTEL/SWAYAM/	MOOCs								

CO's No.	PO1	PO2	PO3	PO4	P05	PS01	PSO2	PSO3	PSO4
CO1	3	3	3	3	1	3	3	3	3
CO2	3	3	3	3	2	3	3	3	3
CO3	3	3	3	3	2	3	3	3	3

Programm	ne: B.Sc. Degree	Year: II	Semester: III					
Class: D.5	с.							
	Subject: Mathematics							
Course Co	ode: Course T	itle: Laplace and Fou	rier Transforms					
Course	CO1: Describe the id	leas of Fourier and Lap	place Transforms and indicate their application	ıs.				
Outcome	CO2: Use Fourier se	ries for solving bounda	ry value problems.					
	CO3:Solve different	al equations with initia	al conditions using Laplace transform.					
Unit No.		Course	Content	Hours				
I	Laplace transforms of	of some standard func	tions, Existence conditions for theLaplace	8				
	transform Shifting th	neorems, Laplace trans	sform of derivatives and integrals, Laplace					
	transform of periodic functions, error functions, Heaviside unitstep function and Dirac							
	delta function.	elta function.						
II	Inverse Laplace tr	ansforms and their	properties, Shifting theorems, Inverse	8				
	Laplacetransform of derivatives and integrals, Heaviside expansion theorem,							
	Convolutiontheorem.							
III	Applications of Laplace transform to solve Ordinary and Partial differential equations,							
	Applications of Lapla	ace transform to solve i	integral equations.					
IV	Fourier series: Trigor	nometric Fourier Series	s and its convergence, Fourier series ofeven	8				
	and odd functions, C	Gibbs phenomenon, Fo	ourier half-range series, Parseval'sidentity,					
	Complex form of Fou	arier series.						
V	Fourier Transforms:	Fourier integrals, I	Fourier sine and cosine transforms and	8				
	theirproperties Four	rier transform of	derivatives and integrals, Convolution					
	theorem, Application	of Fourier transforms t	o Boundary Value Problems.					
Suggested	Readings:							
1. E.	Kreyszig. Advance Eng	gineering Mathematics	, John Wiley& Sons.2011.					
2. R.	K. Jain and S.R.K. lyen	ger, Advanced Engine	ering Mathematics, Narosa Publishing					
3. Ho	ouse, 2009.							
4. F.	B. Hildebrand, Method	ls of Applied Mathema	tics, Courier Dover Publication, 1992.					
5. L	Debanth and D. Bhatta	a, Integral Transforms a	and their Applications. 2 nd Ed. Taylor and					

6. Francis Group, 2007.Suggested digital platform: NPTEL/SWAYAM/MOOCS

CO's No.	P01	P02	P03	P04	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	1	2	3	3	2	3
CO2	3	3	3	1	2	3	3	2	3
CO3	3	3	3	1	2	3	3	2	3

B.Sc. IV (MATHEMATICS) Detailed Syllabus For B.Sc. (Hons.) COURSE IN **MATHEMATICS**

Programm	e: B.Sc. (Hons.)	Year: IV	Semester: VII					
Class: B.S	i.							
		Subject: Mathem	atics					
Course Co	de: Course Ti	tle: Advanced Differen	tial Equation					
Course	CO1: Identifying and	obtaining the solution of	of first order differential equation by I	Picard's				
Outcome	Methods and basic kno	wledge of linear differen	ntial equations of second order.					
	CO2: Analyze the ap	CO2: Analyze the application of partial differential equation in terms of wave heat and						
	Laplace equations.	.1.1. 4		1				
	CO3: Student will be	able to understand the o	brainary and singular points and now t	o solve				
	CO4: Students will be	able to understand basic	s of partial differential equations of firs	st order				
	linear and non-linear p	artial differential equation	ns.	n order,				
	CO5: Obtaining the so	lution of Linear partial d	ifferential equations with constant coffic	cients.				
Unit No.	Course Content							
Ι	The Existence and	Uniqueness of soluti	ons : The method of successive	12				
	approximation, Picard's Existence and Uniqueness theorem, Ordinary and							
	regular singular points, Power series solution, Series solution							
	(Frobenius method)	of first and second orde	er linear equations.					
II	Legendre and Bess	sel Functions and th	neir recursion formulae, Integral	12				
	representation and pr	operties.						
III	Solution of linear pa	rtial differential equat	ions of second order with variable	12				
	coefficients, Applica	tions to the vibrational	mechanical systems.					
IV	Linear homogeneous	boundary value prob	lems: Eigenvalues, Eigenfunctions,	12				
	Sturm-Liouville bour	ndary value problems.						
	Non-homogeneous	boundary value prob	olems: Non-homogeneous Sturm-					
	Liouville boundary v	alue problems		1.0				
V	Wave equation, La	place equation and	Heat conduction equation, Their	12				
	solutions by method	of separation of variab	les and applications.					
Suggested	Readings:	1D:ff	(\mathbf{C}, \mathbf{C})					
1. M.D.I	Kaisinghania: Advance	a Differential Equation	ns (S Chand)					
2. Sneple	ey L. Koss: Differentia	I Equations (Wiley Inc	lla) stiona MaGrow Hill Dools Correspond					
J. I. N. S 4 S C D	V Paghavandra E	Varial Differmulai Equa	mons, McGraw Hill Book Company	1				
4. SUD	eo, v Ragnavendra, F	K ai, v Laksiilikantha	in . Text book of Ordinary Differenti	ai				

- Equations (McGraw Hill Education) 5. Suggested digital plateform:NPTEL/SWAYAM/MOOCs

CO's/ No.	P01	PO2	PO3	PO4	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	1	2	2	3	3
CO2	3	3	3	3	1	2	2	3	3
CO3	3	3	3	3	1	2	2	3	3
CO4	3	3	3	3	1	2	2	3	3
CO5	3	3	3	3	1	2	2	3	3

Progr	amme: B. Sc.(Hons.)	Year: IV	Semester: VII					
Class:	B.Sc.							
		Subject: Mathematics						
Cours	e Code:	Paper: Advanced Real Analysis						
Cours	e CO1: Advanced	real analysis is one of the building bl	ocks of analysis. Objective of	of this				
Outco	me course is to int	roduce students to basic concepts of	f real valued functions, Rie	emann				
	integrations and i	metric spaces.						
	CO2: On success	sful completion of the course, students	will gain knowledge about co	oncept				
	of real valued f	functions, sequence and series of rea	al valued functions, Fundar	nental				
	theorem of calcul	lus, metric spaces, connectedness and c	ompactness of metric spaces	etc.				
	CO3: This cours	e has the foundation for higher courses	s like fixed point theory, top	ology,				
	functional analys	is etc.						
Units	Paper Contents			Hours				
Ι	Sequence of Functions:	Sequence of real valued functions, pointv	vise and uniform convergence	12				
	of sequence of functions,	, pointwise and uniform convergences of s	equence of functions, uniform					
	bounded sequence of fu	nctions, Cauchy's criterion for uniform	convergence for sequence of					
	functions, M _n -test, inte	grability and differentiability of uniform	m convergence sequence of					
	functions.							
Π	Series of Functions: Se	eries of real valued functions, pointwise	and uniform convergence of	12				
	series of functions, Cauc	chy's criterion for uniform convergence for	or series of functions, M-test,					
	Abel's test, Dirichlet's test, Series of real valued functions, integrability and differentiability of							
	uniform convergence ser	les of functions.						
	Mean Value Theorem:	Rolle's, Lagrange's (First mean value t	theorem) and Cauchy's mean					
TTT	Value theorems (Statemer	nition and Existence of Diamonn integral	Doutition Linnon gum Louyon	12				
111	sum Refinement Unper	and lower Riemann integral Properties of 1	Riemann integral	12				
	Fundamental Theorem	of Calculus. First and second funda	umental theorem of calculus					
	(statements) with exampl	es.	include incoroni or culculus					
IV	Metric spaces and its r	properties: Definition and examples of m	netric space. Open and closed	12				
1,	balls with examples, Neight	ghborhoods. Open and closed sets with sor	ne basic concepts, Continuous					
	functions and its basic	properties, Diagonal map, Continuity	theorem for open set (only					
	statement). Limit points	and Closure of sets with some basic conce	pts, Derive set, Interior points					
	of set, Basic concepts on	interior of sets, Boundary of set and exterio	or of set with examples.					
	Complete metric space	s: Convergent sequence in metric space,	, Cauchy sequence, Cauchy's					
	criterion theorem, Compl	ete metric spaces with basic properties.						
V	Connected spaces: Con	nected and disconnected sets, some basic	c concepts on connectedness,	12				
	locally connected spaces	with examples, Totally disconnected spa	ces, Path, Path-connectedness					
	With examples.	asymptotic and sub-asymptotic Compact matrice of	and Compact subsets Desig					
	compact spaces: Open	cover and sub cover, Compact metric sp ad continuity. Unions and interspections of a	pace, Compact subsets, Basic					
	of products I ocal Comp	actness with basic concepts	compact subsets, Compactness					
Sugge	sted Books	tetiless with basic concepts.						
1. Wal	ter Rudin. Principles of Ma	thematical Analysis, McGraw, Hill.						
2. Rob	ert Bartle, the elements of i	ntegration and Lebesgue measure, Wiley C	Classics Library.					
3. Gera	3. Gerald Folland, Real Analysis, Modern Techniques and Their Application. Wiley.							
4. S.C.	4. S.C. Malik and S. Arora, Mathematical Analysis, New Age International.							
5. W. A	5. W. A. Sutherland, Introduction to metric and topological spaces (Second Edition), Oxford University							
Pres	Press, New York.							
6. M. C	6. M. O. Searcoid, Metric spaces (Springer Undergraduate Mathematics Series), Springer, New York.							
7. E. T	. Copson, Metric Spaces, P	hoenix Public Library, New York.						
Ν	Mapping of course outco	omes with program outcomes & prog	ram specific outcomes					

lapping of course outcome	s with program	outcomes & program	specific outcomes
---------------------------	----------------	--------------------	-------------------

CO'sNo.	P01	P02	P03	P04	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	1	2	1	1	1
CO2	3	3	3	2	1	3	2	1	1
CO3	3	2	2	2	1	2	1	1	1

Programm	e: B. Sc.(Hons.)	Year: IV	Semester: VII				
Class: D.SC							
		Subject: Mathem	atics				
Course Co	de: Course Ti	tle: Mathematical Sta	tistics				
Course	CO1: Mathematical St	atistics is a basic course	in almost all branches of science. The ol	ojective			
Outcome	of this course is to intro	oduce a student to the bas	sics of probability and statistics with som	ne of its			
	applications.	a this course a studen	t will have the knowledge of mehabil	ity and			
	CO2: After completing this course, a student will have the knowledge of probability and statistics its scope and importance in various fields.						
	CO3: The student will	use this knowledge in co	omputer science, finance mathematics, in	dustrial			
	mathematics and bio	mathematics. After con	pletion of this course students apprec	iate its			
	interdisciplinary nature						
Unit No.	Course Content						
Ι	Random experiment,	sample space and ever	its, algebra of events. Definitions of	12			
	Probability: Classical, statistical and axiomatic approaches, illustrations and						
	multiplication rule, Total probability rule, Bayes' theorem with applications.						
II	Definitions of discret	te and continuous rand	lom variables. Distribution function.	12			
	probability mass and d	ensity functions – prope	rties and illustrations, Expectation of a				
	random variable and r	rules of expectation and	related results, Probability generating				
	function, Moments and	l moment generating fun	ction – properties and uses, Bernoulli's				
	Distribution, Binomia	I Distribution, Poisson	distribution (their density functions,				
III	Normal distribution	Uniform & Exponent	ial distribution sampling types of	12			
111	Sampling Test the s	significance critical rea	ison and level of significance Null	12			
	hypothesis, Test of hyp	oothesis, Testing the sign	ificance of sample mean and difference				
	between means of two	samples.	L L				
IV	Pt. Estimation, Interva	l Estimation, Methods o	f Estimation, Max Likelihood method,	12			
	Method of moments, U	nbiasedness, Efficiency,	Consistency, Sufficiency.				
V	Curve Fitting, methods	of Least square, Simple	linear regression, Correlation, Multiple	12			
	correlation.						
Suggested	Readings:	A Statistics Duration II.					
1. Willier 2 Gunta	& Freund: Probability an & Kapoor: Probability an	d Statistics, Prenuce Ha	u ad & Sons				
3. M.R.S	 Gupta & Kapoor: Probability and Statistics, Suitan. Chand & Sons M R Spiegel: Theory & problems of Probability. Schaum'sOfline Series 						
4. Ray &	Sharma, Mathematical S	Statistics, Ram Prasad Pu	blication				
5. S Ross	: A First Course in Proba	ability, PrenticeHall.					
1. Sugges	sted digital plateform:NP	TEL/SWAYAM/MOOC	S				

CO's No.	PO1	PO2	P03	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	2	2	1	1	1
CO2	3	3	3	2	2	3	2	1	2
CO3	3	2	2	2	1	2	1	1	2

Progra	mme: B. Sc. Degree	Year: III	Semester: VI					
Class:	B.Sc.							
C		Subject: Mathematics						
Course		Paper: Fluid Dynamics						
Course CO1: Introducing the concepts of fluid motions.								
Outcor	ne CO2: Finding	equation of continuity and equation	of motion of fluid flow.	1 · 1				
	CO3:Provide	foundation for higher courses like	e civil engineering, mec	hanical				
Units Denom Contents								
Units	Paper Contents			Hours				
1	Characteristics of F	luids: Pressure, Density, Specific w	reight, Specific volume,	12				
	Thermal conductivity of fluids, Specific heats $(C_p \text{ and } C_v)$, Incompressible							
	andcompressible flu	iids, Compressibility, Viscous (F	Real) and non-viscous					
	(inviscid or perfect) fluids, Viscosity, Newton's la	w of viscosity, Some					
	important flows and	their definition: Laminar (streamlin	ne) and turbulent flows,					
	Steady and unsteady flows, Rotational and irrotational flows, Uniform and							
	non-uniform flows.							
II	Fluid motion: Eulerian and Lagrangian description of fluid motion and 12							
	examples, Velocity	of a fluid particle, Material,	Local and convective					
	derivative, Accelera	tion of a fluid particle (vector f	form and in Cartesian					
	coordinate), Example	es, Conservation of mass, Equation	of conservation of mass					
	(equation of contin	uity), Vector form, Cartesian o	coordinate, Cylindrical					
	coordinate.							
III	Kinematical and P	hysical Properties:Boundary cond	litions(Kinematical and	12				
	Physical), Condition	s at a boundary surface, examples,	Streamlines, Path line,					
	Streak lines, Differe	nce between path lines and stream	lines, Stream tube and					
	stream filament, Exa	mples, The velocity potential, The	vorticity vector, Vortex					
	lines and their equa	ations, Vortex tube and vortex fil	ament, Rotational and					
	irrotational motion, H	Examples.						
IV	Equation of Motior	Equation of Motion of perfect flu	id: Euler's equation of	12				
	motion (cartesian coo	ordinate), Lamb's hydrodynamical e	quation, Examples.					
V	Bernoulli's equation	n and theorem:Bernoulli's equation	on (Pressure Equation),	12				
	Bernoulli's theorem	, Applications of Bernoulli's equ	uation and Bernoulli's					
	theorem (Torrieclli's	theorem, Pitot Tube).						
Sugges	ted Books							
1. F. Cl	narlton,A Text Book o	f Fluid Dynamics, CBC.						
2. M.D.	Raisinghania,Fluid D	ynamics, S.Chand and Company.						
3 . B. R.	Munson, D. F Young	, T. H. Okiish, Fundamentals of Flu	id Mechanics, John Wile	ey &				

Sons.

CO's No.	P01	PO2	P03	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	3	3	2	2	1	2
CO2	3	3	3	3	3	3	2	3	3
CO3	3	3	3	3	3	3	3	2	3

Programm	e: B. Sc.(Hons.)	Year: IV	Semester: VIII						
Class: B.So	2.								
		Subject: Mathem	atics						
Course Co	de: Course Ti	tle: Complex Analysis							
Course	CO1: The course is ai	med at exposing the stu	dents to foundations of analysis whi	ich will be					
Outcome	useful in understanding	g various physical pheno	omena and gives the student the fou	indation in					
	CO2: Upon successful	completion, students wi	ll be able to understand the complex	variables.					
	analytic functions, com	analytic functions, complex integration and residues which will prepare the students to take up							
	further applications in t	further applications in the relevant fields.							
	CO3: After completion of this course the student will have rigorous and deeper understanding								
	of fundamental concep	n research.	will be helpful to the student in unc	lerstanding					
Unit No.		Course Content Hours							
Ι	Continuity and differentiability of complex functions, Analytic and regular								
	unctions, Cauchy-Reimann equations, Necessary and sufficient conditions for a								
	function to be analytic, some properties of conjugate functions, Construction of an analytic function, Milne Thomson's method.								
II	Complex integration, Cauchy Goursat theorem, Cauchy's theorem, Morera's 12 theorem, Cauchy's integral formulae, Cauchy inequalities, Liouville's theorem.								
III	Gauss mean value th Argument Theorem, Ro	eorem, Maximum & n ouche's Theorem, Poisso	ninimum modulus theorems, The n's integral formulae.	12					
IV	Power series, The cir Laurent's series, The Introductory conformal	cle of convergence of zeros of an analytic mapping (Bilinear trans	the power series, Taylor's series, function, Types of singularities, formation).	12					
V	Residue at a single pole infinity, Cauchy's resi round the unit circle.	e, Residue at a pole a of due theorem, Evaluation	order greater than unity, Residue at 1 of real definite integral, Integral	12					
 Suggested B.Chur Shanti S Ponn J.H. M Murry LV.Ah Z. Neh Suggestion 	 round the unit circle. Suggested Readings: 2. B.Churchil: Fundamental of Complex Analysis 3. Shanti Narain: Function of Complex Variable, S Chand, 2005 4. S Ponnusamy, Functions of Complex Analysis, Narosa, 200 5. J.H. Methews&R.W.Howell: Complex Analysis for Mathematics & Engineering, Narosa Pub. 6. Murry R. Spiegel: Complex Analysis, Schaum's outline 7. LV.Ahlfors: Complex Analysis, McGraw-Hill 8. Z. Nehari: Conformal Mapping , Dover Pub. 9. Suggested digital plateform: NPTEL (SWAYAM/MOOCS) 								

CO's No.	P01	PO2	P03	PO4	P05	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	2	3	3	3	3
CO2	3	3	3	2	3	3	3	2	3
CO3	3	3	3	3	2	3	2	2	3

Programme: B.Sc.(Hons.)) Year: IV	Semester: VIII	Semester: VIII					
Class: B.Sc.									
Subject: Mathematics									
Cours	e Code:	Course Title: Abstract A	lgebra						
Cours	e CO1 :Unders	standing the concepts of abstr	g the concepts of abstract mathematics, normal subgroups, finite						
Outco	me group	s, class equation of a group and i	s equation of a group and its consequences.						
	CO2 :Proper	ties and relationships of Euclid	nd relationships of Euclidean rings, ideals, principal ideal domains,						
	fields	fields etc.							
	CO3 : Conce	Concept of homomorphism in groups and modules.							
	CO4 : Unde	erstanding relationships among	polynomial rings, roots of polynom	mals and					
	extens	sion fields.	f a polynomial over a field and cone	tructible					
	rumb	ers	a porynolliar over a field and cons	structione					
Units	Paper Contents	Paner Contents Hours							
I	Normal subgroups, S	Normal subgroups, Simple groups, Conjugacy, Normalization, Centre of a group, Class-							
_	equation of a grou	ip and its consequences, Theor	ems for finite groups, Cauchy's						
	theorem, Sylow's th	eorem.							
Π	Homomorphisms, E	ndomorphisms, Automorphisms	s, Inner automorphisms, Group of	12					
	automorphisms and Inner automorphisms, Maximal subgroups, Composition series,								
	Jordan-Holder theorem, Normal series, Solvable groups, Direct-Products.								
III	Ideals, Principal Ideal, Maximal and Prime ideals, Quotient ring, Euclidean Rings,								
	Module, Sub-module, Module homomorphism, Linear sum and direct sum of sub-								
IV	Extension fields Tr	ansitivity of finite extensions	Algebraic element Algebraic field	12					
1 V	extensions Minimal polynomials Roots of polynomials Multiple roots Splitting field								
	Existence of SF of a polynomial.								
V	Automorphism of a field, Fixed field, Group of Automorphism of a field K relative by a 12								
	subfield F of K, Galois group of a Polynomial over a field, Construction with straight								
edge and Compass.									
Suggested Books									
1.I.N. Herstein, Topics in Algebra, Wiley Eastern Ltd.									
2.J. Fraleigh, A First Course in Abstract Algebra, Pearson Education.									
3.Mac-Donald, Theory of Groups and Fields, Clarendon Press									
4. Khanna and Bhambari, A Course in Abstract Algebra (VikashPub., III Edition.)									

CO's	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
No.									
CO1	3	3	3	3	1	2	1	2	3
CO2	3	3	3	3	1	2	2	2	3
CO3	3	3	3	3	1	2	1	2	3
CO4	3	3	3	3	1	2	2	2	3
CO5	3	3	3	3	1	2	2	2	3

Programme: B.Sc.(Hons.)		Year: IV	Semester: VIII					
Class: B.S	sc.							
Cubicat Mathematica								
Subject: Mathematics								
Course	Course Thie: veur Mathematics							
Outcome	efficient approaches	for basic computations	marytical uninking unough uns and					
outcome	efficient approaches for basic computations.							
	calculations and will	help students to enjoy	Mathematics by understanding cond	cents in				
	different way	help students to enjoy	manenanes by understanding cone	epts in				
	CO3: This course w	vill lead the student to	basic courses likes trigonometry, a	lgebra.				
	astronomy etc.			-8,				
Unit No.		Course Con	tent	Hours				
Ι	Introduction of Vedi	c Sutras and Upsutras.		5				
	Application of Ekadl	nikenaPurvena Sutra:						
	Multiplication num	bers containing two dig	gits, three digits and more.					
	Division divisor con	taining two digits.						
II	Application of Ekany	yunenaPurvena Sutra:		5				
	Multiplication num	bers containing two dig	gits, three digits and more.					
	Division divisor con	taining two digits only						
III	Application of Urdhy	watiragbhyam Sutra:		5				
	Multiplication num	bers containing two dig	gits, three digits and more.					
	Division divisor con	taining two digits only						
IV	Application of Nikhi	lamNavatashchramam	Dashatah Sutra:	5				
	Multiplication num	bers containing two dig	gits, three digits and more.					
T 7	Division divisor con	taining two digits and i	nore, method (three digits divisor)	~				
V	Application of diffe	rent Sutras and Upsu	tras(ParavartyaYojayet Sutra)	5				
	Square and Cube of numbers containing two digits and more (various							
	methods).							
	Square root and Cuberoot of perfect numbers containing four digits and more							
	(Vilokanam method,	ParavartyaYojayet Sut	ra).					
Suggested Readings:								
1. Tirthji, Swami BhartiKrishan, Vedic Mathematics, MotiLalBanarasi Das, New Delhi .								
2. KailashVishvakarma: Vedic Ganita: Vihangama Drishti-1, SikshaSanskritiUthana Nyasa,								

New Delhi3. NidhiHanda: Ancient Hindu Mathematics: An introduction. OshinaPublisher, Indore.

Mapping of course outcomes with program outcomes & program specific outcomes

CO's P01 P02 P03 P04 P05 PS01 PS02 PS03 PS04

No.	P01	PO2	P03	P04	PO5	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	1	2	2	1	1
CO2	3	3	3	1	1	3	2	2	1
CO3	3	2	2	2	1	2	1	1	1