B. Sc. II Year		BPH-C301			Semester-III	
DSC 3		THERMAL PHYSICS AND STATISTICAL MECHANICS				
Total	Time Allotted		Marks Allotted	Marks Allotted for	Maximum	Total
Lectures	for End		for Continuous	End Semester	Marks	Credits
	Semester		Assessment	Examination (ESE)	(MM)	
	Examination					
60	3 Hrs		30	70	100	04

NOTE: The question paper shall consist of TWO sections (Sec.-A, Sec.-B). Sec.-A shall contain 10 short answer type questions of Five mark each and student shall be required to attempt any Five questions. Sec.-B shall contain 8 descriptive type questions of ten marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllbus. The previous year paper/model paper can be used as a guideline and the following syllabus should be strictly followed while setting the question paper.

Thermodynamic Description of System: Zeroth Law of thermodynamics and temperature. First law and internal energy, conversion of heat into work, Various Thermodynamical Processes, Applications of First Law: General Relation between C_P & C_V , Work Done during Isothermal and Adiabatic Processes, Compressibility & Expansion Coefficient, Reversible & irreversible processes, Second law & Entropy, Carnot's cycle & theorem, Entropy changes in reversible & irreversible processes, Entropy-temperature diagrams, Third law of thermodynamics, Unattainability of absolute zero. (22 Lectures)

Thermodynamic Potentials: Enthalpy, Gibbs, Helmholtz and Internal Energy functions,Maxwell's relations & applications - Joule-Thompson Effect, Clausius- ClapeyronEquation, Expression for $(C_P - C_V)$, C_P/C_V , TdS equations.(10 Lectures)

Kinetic Theory of Gases: Derivation of Maxwell's law of distribution of velocities and its experimental verification, Mean free path (Zeroth Order), Transport Phenomena: Viscosity, Conduction and Diffusion (for vertical case), Law of equipartition of energy (no derivation) and its applications to specific heat of gases; mono-atomic and diatomic gases. (10 Lectures)

Theory of Radiation: Blackbody radiation, Spectral distribution, Concept of Energy Density, Derivation of Planck's law, Deduction of Wien's distribution law, Rayleigh-Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law.

(6 Lectures)

Statistical Mechanics: Maxwell-Boltzmann law - distribution of velocity - Quantumstatistics - Phase space - Fermi-Dirac distribution law - Bose-Einstein distribution law -comparison of three statistics.(12 Lectures)

Reference Books

- Thermal Physics, S. Garg, R. Bansal and C. Ghosh, 1993, Tata McGraw-Hill.
- A Treatise on Heat, Meghnad Saha, and B.N. Srivastava, 1969, Indian Press.
- Thermodynamics, Enrico Fermi, 1956, Courier Dover Publications.
- Thermodynamics, Kinetic theory & Statistical thermodynamics, F.W.Sears & G.L.Salinger. 1988, Narosa
- University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.