
six marks. The question paper shall consist of two sections (See. - A and See. 13). Sec. A shall comain 10 , wor: answer type questions of each and student shall be required to ated to attempt any five questions. Sec. 13 simill comain 8 desefptive type cquestions of ten marks previous year paper/model paper can be used any questions. Questions shall be miformly distribucd from the catire syllbus. The question paper.

Learning Objectives

The purpose of this paper is to immoduce students to differom methods of mentiomutical phesics. The course structure of this paper

MATRICES \& TENSORS

Orthogonal, Hermitian, Unitary and Normal matrices, Pauli and Dirac matrices, Orthogomality conditions, Jonsor analysis: Introduction and definitions (Covariant and contravariant tensors, Addition, Multiplication \& rank of tensors, Contraction, Direct product, Quotient rule), Pseudo and dual tensors, Levi-Civita symbol, Motric tensor, Christofel symbols as derivatives of the metric tensor. (12 Iectures)

COMPLEX VARIABLES

Functions of complex variables, Analytic function, Cauchy integral theorem and Canchy atepal fomana, Taylor and Laurent series, Theorem of residues, Contour integrals and definite integrals. (12 Lectures)

SPECIAL FUNCTIONS

Legendre, Bessel, Hermite, Laguerre equations and their solutions \& polynomials, Recumsion relations, Orteogonality and generating functions, Associated Legendre polynomials. (12 Iectures)

INTEGRAL TRANSFORMS

First and second order shifting theorems, Fouriers series, Fourier integral, Fourier trarshames (:T), Dime deta functions and its FT, Laplace transforms (LT), Inverse LT by partial fractions, IT of derivative and waegra farction
(12 [.cetures)

PARTIAL DIFFERENTIAL EQUATION

Laplace equation and its solution in rectangular, cylindrical and spherical cooribnates, Poisson equation
(Green's function solution), Two dimensional wave equation, Vibrating, membrame (rectargutar ane cireation).

Text Books / Reference Books

1. Mathematical Physics - B.S. Rajput
2. Mathematical Methods for Physics - G Arfken
3. Mathematical Methods for Physics- G.Arfken
4. Applied Mathematics for Physicists \& Engineer- Pipes \& Itarvil
5. Matrices and Tensors for Physicists- A.W. Joshi
6. Advanced Engineering Mathematics-E. Kreysrig
7. Mathematics for Physicists-Mary I. . Boas
8. Special functions - E.D. Rainville
9. Special functions W. W. Bell
10. Mathematical Methods for Physicists \& Engineers- K.E. Reily, MPllllohore: , \& 81 Rew

