M. Sc. II Year		MPH-E411			Semester-IV	
ELCETIVE PAPER IV/V			PHYSICS C			
Total	Time Allotted for		Marks	Marks Allotted for	Maximum	Total Credits
Lectures	End Semester		Allotted for	End Semester	Marks	
	Examination		Continuous	Examination (ESE)	(MM)	
			Assessment			
60	3 H	[rs	30	70	100	04

NOTE: The question paper shall consist of two sections (Sec.-A and Sec.-B). Sec.-A shall contain 10 short answer type questions of six marks each and student shall be required to attempt any five questions. Sec.-B shall contain 8 descriptive type questions of ten marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllbus. The previous year paper/model paper can be used as a guideline and the following syllabus should be strictly followed while setting the question paper.

UNIT I

Nanostructures & Structural Characterization: History – background – nanoscale in one dimension, two dimensions, three dimensions – Synthesis of oxide nanoparticles (Sol-gel processing), metallic nanoparticles: semiconductor nanoparticles, fabrication of core – shell nanostructures – aerosol synthesis – gas phase synthesis of nanoparticles – Structural characterization – X-ray diffraction – STM, Atomic force microscopy, properties of nano materials.

UNIT II

Carbon Nanotubes : Carbon allotropes – types of carbon nanotubes – graphene sheet to single walled carbon nanotubes – electronic structure of carbon nanotubes – synthesis of carbon nanotubes: electric arc discharge method – laser method – electrolysis – pyrolysis of hydrocarbons – Fluidised bed CVD method – solar production of CNT – purification methods – properties – filling of CNT – fullerene – purification – properties – application of CNT .

UNIT III

Quantum Heterostructures: Introduction – heterostructure – growth of heterostructure: molecular beam epitaxy – metal organic chemical vapour deposition – heterojunction band alignment – quantum well – superlattice – low dimensional system — doped heterostructures: modulation doping – quantum wells in heterostructures – effective mass theory in heterostructures – application of effective mass theory in quantum wells in heterostructures – optical confinement – application of heterostructures.

UNIT IV

Quantum wires & Quantum dots: Introduction – size effects - preparation of quantum nanostructures – Fermi gas and density of states – calculation of density of states – infrared detector – quantum well lasers – quantum cascade laser – nanowires – production, structure and uses of nanowires – quantum dots: fabrication techniques – electronic properties - application of quantum dots: information storage – infrared photodetector – laser.

UNIT V

Magneto Electronics and Applications of Nano Technology:

Magnetism in nanocrystals – Nanocrystalline soft magnetic materials – Columb blockade – single electron transistor – quantum cellular automata – fabrication – Spintronics – giant magnetoresistance – Quantum Hall effect – Quantum spin Hall effect – fractional quantum Hall effect – application of nanotechnology – medical application of molecular nanotechnology.

BOOKS FOR REFERENCE

- 1. Optical Properties of Semiconductor Quantum Dots, U. Woggon Springer Verlog.
- 2. Nanophysics edited by Dr. Sr. Gerardin Jayam.
- 3. Transport in Semiconductor nanostructure, D. Ferry and S. Goodnick, Cambridge University Press, 1997.
- 4. Nanotechnology in Carbon Materials, M. S. Dresselhaus and R. Salio .
- 5. Advanced Magnetic nanostructures, K. P. Awasthi, Cyber Tech Publications, 2008.
- 6. Introduction to Nanotechnology, Charles P. Poole Jr, Frank. J. Owens, Wiley India Pvt. Ltd, 2008.