M. Sc. II Year				Semester-IV		
ELCETIVE PAPER IV/V		RENEWABLE ENERGY SOURCES				
Total	Time All	otted for	Marks	Marks Allotted for	Maximum	Total Credits
Lectures	End Se	mester	Allotted for	End Semester	Marks	
	Examination		Continuous	Examination (ESE)	(MM)	
			Assessment			
60	3 Hrs		30	70	100	04

NOTE: The question paper shall consist of two sections (Sec.-A and Sec.-B). Sec.-A shall contain 10 short answer type questions of six marks each and student shall be required to attempt any five questions. Sec.-B shall contain 8 descriptive type questions of ten marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllbus. The previous year paper/model paper can be used as a guideline and the following syllabus should be strictly followed while setting the question paper.

UNIT I

Introduction : Primary and Secondary energy– commercial and non – commercial energy – renewable and non– renewable energy resources and their importance – world energy use– reserves of energy resources – energy cycle of earth – Indian energy scenario – Long term energy scenario for India – environmental aspects of utilization.

UNIT II

Solar Energy: Introduction—extra terrestrial solar radiation—radiation at ground level—collectors—solar cells—application of solar energy—Biomass energy—biomass conversion—bio gas production—ethanol production—pyrolysis and gasification—direct combustion—applications.

UNIT III

Wind Energy: Introduction – basic theory – types of turbines – applications

Geothermal energy – Introduction – geothermal resources types – resource base– application for heating and electricity generation– Tidal energy – Introduction – origin of tides – power generation scheme – Wave energy – Introduction – basic theory – wave power devices.

UNIT IV

Other Renewable Energy Sources: Introduction – open and closed OTEC cycles – biophotolysis – ocean currents – Hydropower – introduction – basic concept– site selection – types of turbine – small scale hydropower– Magneto hydrodynamics (MHD), Thermoelectric and Thermionic energy resources – basic principles – power generation – Nuclear energy – basic principle – power generation (basic ideas only).

UNIT V

Chemical Energy Sources: Introduction – Fuel cells-design and principle – classification – types-advantages and disadvantages – applications – Batteries – introduction – theory – different types of batteries arrangements – classification of batteries – advantages of batteries for bulk storage – Hydrogen energy – production – electrolysis – thermochemical methods – solar energy method – hydrogen storage.

BOOKS FOR REFERENCE

- 1. Solar Energies of Thermal Processes, A.Duffie and W.A.Beckmann, John-Wiley, 1980.
- 2. Principle of Solar Engineering, F.Kreith and J.F.Kreider, McGraw-Hill, 1978
- 3. Alternate Energy Sources, T.N. Veziroglu, Vol.5 and 6, McGraw –Hill, 1978.
- 4. Solar Energy -Principles of Thermal Collection and Storage, *S P Sukhatme* and J K Nayak, Tata Mc Graw Hill.Tata, 2008
- 5. Non-Conventional Energy Sources, G.D. Rai, Khanna publishers, New Delhi, 1984