SEMESTER EXAMINATION-2021 CLASS –B.Sc. V SEMESTER SUBJECT: MATHEMATICS PAPER CODE: BMA-E503 PAPER TITLE: LINEAR ALGEBRA Time: 3 hour Max. Marks: 70

Min. Pass: 40%

Note: Question Paper is divided into two sections: **A and B.** Attempt both the sections as per given instructions.

SECTION-A (SHORT ANSWER TYPE QUESTIONS)

Instructions: Answer any five questions in about 150 words (5 X 6 = 30 Marks) each. Each question carries six marks.

Question-1: Let W={ $(x, y, z): x^2 = y$ }. Is W is a subspace of $V_3(R)$. **Question-2:** Is the set {(1,0), (2,3), (1,2)} linearly dependent?. Justify **Question-3:** Show that the mapping $T: R^3 \to R^3$ defined by

T(x, y, z) = (x + 2y, y + z, x) is linear.

Question-4: Prove that intersection of two subspaces W_1 and W_2 of a vector space V(F) is also a subspace of V(F).

Question-5: Define any two of the following with an example:

(i) Basis of a vector space

(ii) Linear functional

(iii) Dual Basis

Question-6: Find a linear transform $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that T(2,3)=(4,5) and T(1,0)=(0,0). **Question-7:** Show that a linear transformation $T: V \to W$ is one-one iff null set N(T) is the zero space $\{o_V\}$.

Question-8: Let $T: V_3(R) \rightarrow V_3(R)$ defined by:

 $T(a, b, c) = (3a, a - b, 2a + b + c), \forall (a, b, c) \in V_3(R)$

Is T is invertible?. If so find T^{-1}

Question-9: Let A be an $n \times n$ matrix and λ an eigenvalue of A. Show that the set of all eigenvectors corresponding to λ , together with the zero vector, is a subspace of \mathbb{R}^n .

Question-10: Prove that any two bases of a finite dimensional vector space have same number of elements

SECTION-B (LONG ANSWER TYPE QUESTIONS)

Instructions: Answer any FOUR questions in detail. Each (4 X 10 = 40 Marks) question carries 10 marks.

Question-11: Prove that a non-empty subset W of a vector space V(F) is a subspace of V if and only if:

 $a, b \in F \text{ and } \alpha, \beta \in W \Rightarrow a\alpha + b\beta \in W$

Question-12: Show that the set $V = \{(x, y, z) : x, y, z \in R\}$ is a vector space over the field R.

Question-13: If U and V be the vector spaces over the field F and T be a linear transform from U into V then Prove that:

Rank(T) + Nullity(T) = Dim U

Question-14: Prove that every n-dimensional vector space V(F) is isomorphic to $V_n(F)$.

Question-15: Find the dual basis of the basis set $B = \{(1, -1, 3), (0, 1, -1), (0, 3, -2)\}$ for $V_3(R)$.

Question-16: Let the linear map $T: V_3 \rightarrow V_2$ defined by T(x, y, z) = (2x + y, 2y - x). Find the matrix of the transformation relative to bases $B_1 = \{(1,1,0), (1,0,1), (0,1,1)\}$ and

 $B_2 = \{(1,1), (1,-1)\}$

Question-17: If W_1 and W_2 are two sub spaces of vector space V(F) then prove that

 $dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$ Question-18: Find the eigen values and eigen vectors of the matrix: $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Paper Code: BMA-E503