SEMESTER EXAMINATION-2021

CLASS -B.Sc. V SEMESTER SUBJECT: MATHEMATICS PAPER CODE: BMA-E503 PAPER TITLE: LINEAR ALGEBRA

Time: 3 hour
 Min. Pass: 40\%

Note: Question Paper is divided into two sections: A and B. Attempt both the sections as per given instructions.

SECTION-A (SHORT ANSWER TYPE QUESTIONS)

Instructions: Answer any five questions in about 150 words (5 X $6=30$ Marks) each. Each question carries six marks.

Question-1: Let $\mathrm{W}=\left\{(x, y, z): x^{2}=y\right\}$. Is W is a subspace of $V_{3}(R)$.
Question-2: Is the set $\{(1,0),(2,3),(1,2)\}$ linearly dependent?. Justify
Question-3: Show that the mapping $T: R^{3} \rightarrow R^{3}$ defined by

$$
T(x, y, z)=(x+2 y, y+z, x) \text { is linear. }
$$

Question-4: Prove that intersection of two subspaces W_{1} and W_{2} of a vector space $\mathrm{V}(\mathrm{F})$ is also a subspace of $V(F)$.

Question-5: Define any two of the following with an example:
(i) Basis of a vector space
(ii) Linear functional
(iii) Dual Basis

Question-6: Find a linear transform $T: R^{2} \rightarrow R^{2}$ such that $\mathrm{T}(2,3)=(4,5)$ and $\mathrm{T}(1,0)=(0,0)$. Question-7: Show that a linear transformation $T: V \rightarrow W$ is one-one iff null set $\mathrm{N}(\mathrm{T})$ is the zero space $\left\{o_{V}\right\}$.
Question-8: Let $T: V_{3}(R) \rightarrow V_{3}(R)$ defined by:
$T(a, b, c)=(3 a, a-b, 2 a+b+c), \forall(a, b, c) \in V_{3}(R)$
Is T is invertible?. If so find T^{-1}
Question-9: Let A be an $n \times n$ matrix and λ an eigenvalue of A. Show that the set of all eigenvectors corresponding to λ, together with the zero vector, is a subspace of R^{n}.
Question-10: Prove that any two bases of a finite dimensional vector space have same number of elements

SECTION-B (LONG ANSWER TYPE QUESTIONS)

Instructions: Answer any FOUR questions in detail. Each (4 X $10=40$ Marks) question carries 10 marks.

Question-11: Prove that a non-empty subset W of a vector space $V(F)$ is a subspace of V if and only if :

$$
a, b \in F \text { and } \alpha, \beta \in W \Rightarrow a \alpha+b \beta \in W
$$

Question-12: Show that the set $V=\{(x, y, z): x, y, z \in R\}$ is a vector space over the field R .
Question-13: If U and V be the vector spaces over the field F and T be a linear transform from U into V then Prove that:

$$
\operatorname{Rank}(T)+\operatorname{Nullity}(T)=\operatorname{Dim} U
$$

Question-14: Prove that every n-dimensional vector space $V(F)$ is isomorphic to $V_{n}(F)$.
Question-15: Find the dual basis of the basis set $\mathrm{B}=\{(1,-1,3),(0,1,-1),(0,3,-2)\}$ for $V_{3}(R)$.
Question-16: Let the linear map $T: V_{3} \rightarrow V_{2}$ defined by $T(x, y, z)=(2 x+y, 2 y-x)$.
Find the matrix of the transformation relative to bases $B_{1}=\{(1,1,0),(1,0,1),(0,1,1)\}$ and

$$
B_{2}=\{(1,1),(1,-1)\}
$$

Question-17: If W_{1} and W_{2} are two sub spaces of vector space $\mathrm{V}(\mathrm{F})$ then prove that

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
$$

Question-18: Find the eigen values and eigen vectors of the matrix: $\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1\end{array}\right]$

