Semester Examination 2021 Subject: Mathematics Paper Code: BMA-S504 Paper Name: COMBINATORIAL OPTIMIZATION MAX. MARKS: 70 Min. Pass % : 40

TIME: 3 Hrs

Note: This question paper is divided into two sections A and B. Attempt all sections as per instructions.

Section-A (Short Answer Type Questions)

Note: Answer any FIVE questions in about 150 words each. Each question carries SIX marks.

- 1. Show that the intersection of two convex sets is again a convex set.
- 2. Write down the computational procedure of Simplex method.
- 3. Find the dual of the following primal problem

Min. $Z = x_2+5x_3$, subject to, $x_1+x_2 \ge 5$, $2x_1+x_2+6x_3 \le 6$, $x_1-x_2+3x_3=4$ and x_1 , $x_2,x_3 \ge 0$.

- 4. Define symmetric and unsymmetric dual problem.
- 5. Define slack variables, surplus variables and artificial variables.
- 6. Discuss combinatorial optimization problem.
- 7. Show that the set of all convex combinations of finite number of points is a convex set.
- 8. Discuss local and global optimality.
- 9. What is degeneracy? Discuss a method to resolve degeneracy.
- 10. Discuss travelling salesman problem.

Section-B (Long Answer Type Questions)

NOTE: Answer any FOUR questions in detail. Each question carries TEN marks.

1. Prove that dual of the dual of a given primal is the primal itself.

2. Solve the following LPP by using Big-M method:

$$\begin{aligned} Min \, Z &= x_1 + x_2 \\ s.t. & 2x_1 + x_2 \geq 4 \\ & x_1 + 7x_2 \geq 7 \end{aligned} \qquad x_1, x_2 \geq 0 \end{aligned}$$

3. Solve the following problem by dual simplex method.

Min. $Z = 2x_1 + x_2$, subject to, $3x_1 + x_2 \ge 3$, $4x_1 + 3x_2 \ge 6$, $x_1 + 2x_2 \ge 3$ and $x_1, x_2 \ge 0$.

4. Find the optimum integer solution of the following integer programming problem:

Max. $Z = x_1+x_2$, subject to, $3x_1-2x_2 \le 5$, $x_1 \le 2$ and x_1 , $x_2 \ge 0$ and are integers.

- 5. Discuss Cutting-Plane algorithms.
- 6. Use Branch and Bound technique to solve the following problem: $Max.Z = 7x_1 + 9x_2$ $subject to - x_1 + 3x_2 \le 6$ $7x_1 + x_2 \le 35$ $0 \le x_1, x_2 \le 7$ x_1, x_2 are int egers.
- 7. Show that the set of all basic feasible solutions of a linear programming problem is a convex set.
- 8. Use two-phase method to solve the following problem:

 $Max. Z = x_{1} + x_{2}$ subject to $2x_{1} + x_{2} \ge 4$ $x_{1} + 7x_{2} \ge 7$ $x_{1}, x_{2} \ge 0.$

****~