SEMESTER EXAMINATION-2022 CLASS – I SEM SUBJECT-PHYSICS

PAPER CODE: BPH-C101 Mechanics

Time: 3 hour Max. Marks: 70

Min. Pass: 40%

Note: Question Paper is divided into two sections: **A and B.** Attempt both the sections as per given instructions.

SECTION-A (SHORT ANSWER TYPE QUESTIONS)

Instructions: Answer any five questions in about 150 words (5 X 6 = 30 Marks) each. Each question carries six marks.

Ouestion-1: Prove that

 $(b \times c)$. $(a \times d)+(c \times a)$. $(b \times d)+(a \times b)$. $(c \times d)=0$

Question-2: Write short any two

- (i) Radius of Gyration
- (ii) Conservative and non-conservative forces
- (iii) Global positioning system

Question-3: State and prove work-energy theorem.

Question-4: What do you mean by "Centre of mass" of a system of particles? Show that, in the absence of any external force, the velocity of the Centre of mass remains constants.

Question-5: A gas bubble of diameter 2.0 cm rises steadily through a solution of density 1.75 g/cm³ at the rate of 0.35cm/s. Calculate the coefficient of viscosity of liquid (neglect density of air).

Question-6: A material has Poisson's ratio 0.20. if a uniform rod of it suffers longitudinal strain 4.0×10^{-3} , deduce the percentage change in volume.

Question-7: Deduce the velocity at which the mass of a particle will be five times the mass at rest.

Question-8: Prove that div grad $r^n = n(n+1)r^{n-2}$

Question-9: Explain Kepler's laws of planetary motion. Derive expression for orbits and escape velocities .

Question-10: State and prove the theorem of parallel axes.

SECTION-B (LONG ANSWER TYPE QUESTIONS)

Instructions: Answer any FOUR questions in detail. Each (4 X 10 = 40 Marks) question carries 10 marks.

Question-11: Prove that

curl curl \vec{A} = grad div \vec{A} - $\nabla^2 \vec{A}$

Question-12: Explain the principle of rocket and deduce the following relation:

$$v = v_o + v_r \log_{\frac{M_o}{M}}$$

Where M and ν are instantaneous mass and velocity of the rocket, M_o and ν_o are the initial values of these of these quantities and ν_r is the velocity of the ejected gases. Explain the limitation of one-stage rocket.

Question-13: Prove that

$$\overrightarrow{A} \times (\overrightarrow{B} \times \overrightarrow{C}) = \overrightarrow{B} (\overrightarrow{A} \cdot \overrightarrow{C}) - \overrightarrow{C} (\overrightarrow{A} \cdot \overrightarrow{B})$$

Question-14: Write short any two

- (i) Bessel's theory of computed time
- (ii) Stoke's theorem of vectors
- (iii) Mass-energy equivalence
- **Question-15:** Explain the theory of flow (Poiseuille's formula) of a liquid through a uniform capillary tube. Mention the limitations of the formula.
- **Question-16:** State the fundamental postulates of the special theory of relativity and deduce from them the Lorentz transformation equations.
- **Question-17:** Calculate the Moment of inertia of a solid sphere about (a) a diameter (b) a tangent
- **Question-18:** Deduce relations among the elastic constants γ , k, η and σ

Paper Code: BPH-C101