B.Sc. V Semester Examination, 2021 Subject: Physics

Paper Code: BPH-E501

Paper Name: Digital and Analog Circuits and Instrumentation Time: Three Hours M.M.: 70

Min. Pass: 40%

Note: The question paper is divided into two sections A and B. Attempt both sections. Answer questions as per instruction given.

Section –A

(Short Answer Type Question)

Note: Attempt any five questions in about 150 words each. Each question carries 6 marks. (5X6=30)

- Q1. What is a p-n junction? Draw and explain V-I characteristics of a p-n junction.
- Q2. A half wave rectifier is used to supply 22 V d.c. to a resistive load of 100Ω . The diode has a resistance of 25Ω . Calculate a.c voltage required.
- Q3. Give the simplified Boolean expression for Y of the 3-variable in the following truth table.

	Output		
A	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- Q4. (a) State De-Morgan's theorems.
 - (b) Simplify this expression:

Y = AB + A (B + C) + B(B + C)

Q5. Explain how OP-AMP can be used as differentiator and integrator.

- Q6. What is LED? Explain the working of a LED.
- Q7. What do you understand by class A, class B and class C power amplifiers? Show that the maximum collector efficiency of a class B power amplifier is 78.5%.
- Q8. Explain DC, AC load line and Q-point with appropriate diagram.
- Q9. (a) Define and explain with circuit diagram, the operation of NAND gate.
 - (b) Using Boolean algebra, verify:

(i)
$$\mathbf{A} + \bar{\mathbf{A}}\mathbf{B} = \mathbf{A} + \mathbf{B}$$
 (ii) $(\mathbf{A} + \mathbf{B})(\bar{\mathbf{A}} + \mathbf{C})(\mathbf{A} + \mathbf{B}) = \mathbf{A}\mathbf{C}$

(c) Find the complement of the function:

$$Y = A(\bar{B}\bar{C} + BC) H$$

- (d) Convert 1745₈ in to its hexadecimal equivalent.
- Q10. Deduce hybrid parameter of a transistor in a common emitter configuration.

Section-B (Long Answer Type Questions)

Note: Attempt any four questions in detail. Each question carries 10 marks. (4X10=40)

Q1. Construct the POS and SOP expression for the following K-Map:

AB CI	00	01	11	10		
00			1			
01	×	×	1	х		
11		1	1			
10		1	1			
(SOP)						

z 🔀	X 00	01	11	10	
00	0	X	0	x	
01					
11	0			0	
10	0			0	
,	(POS)				

- Q2. Describe the RC coupled amplifier. Discuss its equivalent circuit in the different frequency region. Write the expression for its voltage gain in mid and high-frequency regions.
 - A transistor amplifier employs a 4 K Ω as collector load. If the input resistance is 1 K Ω , determine the voltage gain. (Given, $\beta = 100$, $g_m = 10mA/volt$ and signal voltage = 50mV).
- Q3. What is Zener diode? Draw the equivalent circuit of an ideal Zener. How does Zener diode maintain constant voltage across load?

A Zener is used to regulate output voltage for which the load current varies from 12 mA to 100 mA. Find the value of the series resistance to maintain a voltage of 7.2V across the load. The input voltage is constant at 12V and the minimum Zener current is 10mA.

- Q4. The collector and base currents of a certain transistor are measured as, $I_c=10.202 mA,~~I_b=100 \mu A$ and $I_{cbo}=5 \mu A.$
 - (a) Calculate α , β and I_e .
 - (b) Determine the new level of I_b required to make $I_c = 20$ mA
- Q5. What are the essentials of transistor biasing circuits? Discuss voltage divider bias method in detail. How stabilization of operating point is achieved by this method.
- Q6. In the transistor amplifier shown in figure, $R_c = 10k\Omega$, $R_L = 30k\Omega$ and $V_{cc} = 20V$. The values R_1 and R_2 are so as to fix the operating point at 10V, 1mA. Draw the d.c. and a.c. load lines. Assume R_e as negligible.

- Q7. Write short on the following:
 - (i) CRO
 - (ii) Solar cell
 - (iii) Filter circuits
- Q8. What is an operational amplifier (OP-Amp)? Give the block diagram of an operational amplifier. Draw the basic circuit of a differential amplifier. What are common-mode signals? What do you by CMRR?